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Abstract

A probabilistic electoral system is described
in a context accessible to readers not familiar
with social choice theory. This system satisfies
axioms of: identical treatment of each voter
and of each candidate; universal domain; fair
representation of the pairwise preferences of
the electorate; independenceof irrelevant alter-
natives; and clarity of voting for pairwise out-
comes; and henceArrow’s other axioms (weak
Pareto and no dictator) are also satisfied. It
produces in an information-theoretic sense the
least surprising outcome given any candidate-
symmetric prior beliefs on the voters’ prefer-
ences, and is shown to be able to compromise
appropriately in situations where a Condorcet
winner would not be elected top under many
other systems. However, difficulties can arise
with this system in situations where one politi-
cal party is permitted to flood the candidate list
with large numbers of their own candidates.
The empirical properties of this system

are explored and compared with the systems
known as “Majority (or Plurality) Rule” and
“Random Dictator”.
We also make the case for using a proba-

bilistic system even in the simple 2-candidate
case.

1 Introduction

We offer a solution to a classic unsolved problem of
democratic theory, viz., how to reconcile democracy
with rights protection in a deeply divided society, as
illustrated by one in which 60% of citizens are Tall
and 40% are Short, and in which Talls and Shorts
are in zero-sum competition over public goods. We
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will refer to this solution as the “Maximum Entropy
Voting System”.
The problem has been recognised since Aristotle.

Madison, Tocqueville, and J.S. Mill all discussed it
extensively. Madison’s solution is federalism. His
classic expositions in the Federalist ##10 and 51 are
different, and arguably inconsistent, but both appeal
to the concept of an extended republic. In Federal-
ist #10 Madison argues that the extended republic,
as a matter of sociological fact, will be sufficiently
large that there will be no republic-wide faction ca-
pable of imposing its will on the minority by ma-
jority rule. In Democracy in America, Tocqueville
confirms this sociological fact for the USA as he ob-
served it in 1835. In Federalist #51 Madison argues
that ambition must be made to counteract ambition,
so that checks and balances, both vertical and hori-
zontal, restrain full-throated majoritarianism1 .
J.S. Mill’s approach is different, and in principle

it applies to democracies of any size and constitu-
tional structure, not merely to federal states. Chap-
ter VII of his Considerations on Representative Gov-
ernment has the self-explanatory, if tendentious title
‘Of True and False Democracy: Representation of
All, and Representation of the Majority Only’. Mill
here confronts the Aristotelian and Victorian night-
mare that a monolithic working class might (soon)
come to power and pass confiscatory legislation by
majority rule. He discusses various schemes for pro-
portional representation (PR), focusing mostly on
the (wildly impracticable) scheme due to Thomas
Hare. The Hare scheme is the ancestor of Sin-
gle Transferable Vote as applied for national elec-
tions in both parts of Ireland, in the Australian up-
per house, and in many clubs and societies. Hare’s
original scheme was wildly impracticable because
it treated the whole nation as a single district; vot-

1 Aristotle, Politics passim, especially 1319b-1320a; J.
Madison in The Federalist ## 10 and 51; A. de Tocqueville,
Democracy in America especially Vol. I chs III, IX-XVI; J. S.
Mill, Considerations on Representative Government, especially
chapter VII.
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ers would have had to rank impossibly large num-
bers of candidates. The Australian and Irish imple-
mentations made Hare practicable by reducing dis-
trict size. Both Irish implementations (north and
south) were imposed by the British government be-
fore Irish independence in 1920-21. The Northern
Ireland implementation was designed to protect the
minority Catholic community there, and the Irish
Free State implementation to protect the minority
Protestant community there. The latter remains in
the constitution of the Republic of Ireland, although
the Protestant minority has dwindled to below the
size that can be protected by the PR quota in use
in the Republic (and has never been systematically
persecuted).
The scheme below starts from a point that is

well known, but little explored, in social choice.
Satterthwaite (1975) proved that a direct implica-
tion of Arrow’s Theorem was that all deterministic
choice functions are either dictatorial or manipula-
ble. Therefore, if you want a function that is nei-
ther, you should take probabilistic schemes2 seri-
ously. The best-known probabilistic scheme is the
one called Random Dictator (RD) below. The idea
goes back to ancient Greece, but has more recently
been strongly advocated by Amar (1984). A version
was proposed by Burnheim (1985) in ignorance of
the social choice implications. We take both its mer-
its and its demerits seriously and use it as a base for
advance.
Gibbard (1977) considered probabilistic decision

schemes (which ultimately output a top candidate
with no ordering on the runners-up), and showed
that given symmetry on candidates and voters, the
combination of strategy-proofness and the weak
Pareto property is enough to ensure that the scheme
must indeed be RD. Moreover no probabilistic de-
cision scheme (not even RD) can guarantee to pro-
vide an output distribution over the candidates that
cannot be simultaneously bettered in the opinion
of every single voter. McLennan (1980) extended
these results to probabilistic social welfare functions
(whose ultimate output is a strict total ordering over
the candidates rather than just the identity of the
top candidate) to show that if the symmetry axioms,
strategy-proofness, and weak Pareto are met, then

2 As we talk both of probabilistic voting and maximum
entropy, it is useful to specify two traditions to which this paper
does not belong. It is not about probabilistic voting theory in the
sense used by Coughlin (1992), where the research question is
the optimal strategy for a candidatewho does not know for certain
which voters are of which type. Nor is it about maximum entropy
modelling in the sense used in many papers by R. J. Johnston and
collaborators (e.g., Pattie et al. 1994), who use it as a technique
to complete a flow-of-the-vote matrix with some unknown cells.

the induced decision scheme (which ignores the or-
dering other than for its top place) must be RD.
The authors believe that the symmetry axioms are

the most fundamental3 . Given these, we there-
fore cannot have both strategy-proofness and weak
Pareto without confining ourselves to RD, whose
weaknesses will be discussed below. Further, most
would consider that failure to meet weak Pareto is
more serious than failure to be strategy-proof. The
approach we take therefore is to choose axioms
weaker than strategy-proofness in its place, while
retaining the symmetry axioms and the weak Pareto
property.
However, most of the probabilistic systems that

will be discussed coincide in the two-candidate case,
and one of the first key points we want to make
is that even in the two-candidate case, probabilistic
schemes have very significant advantages over ma-
jority rule.

2 A tutorial exposition

(The reader who prefers mathematical precision will
find it in the appendix section 9.)
The reader may first ask why there is any moti-

vation to replace the simple and apparently easy to
understand system of majority rule (MR)4 . Our mo-
tivation is most easily seen by means of examples.
The general setting will always be that each voter
expresses their preference by placing the candidates
in order, from first (most preferred) to last (least
preferred), and the electoral system then gives an
outcome, which also places the candidates in order
from first to last5 . The number of candidates elected
will depend on the particular election; in some a sin-
gle candidate is elected, in others several are elected
(who occupy the top few places in the outcome). By
taking this approach we tacitly assume that the or-
dering of the runners-up (if there is more than one
runner-up) is an important part of the outcome of
the election.

2.1 The problems with majority rule
Although majority rule has been in widespread use
for many years, it has some important drawbacks.

3 Weighted voters are an easy modification of all the
schemes considered, should one be so inclined.

4 Or plurality rule – for more than two candidates – the
candidate with most votes wins. We will refer to this system
throughout as MR (majority rule) for simplicity.

5 This type of system is known as a “(probabilistic) social
welfare function” to distinguish it from a “(probabilistic) decision
scheme” which only outputs the identity of the top candidate and
ignores the ordering of the runners-up.
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2.1.1 Majority rules – and in some places,
always

By way of hypothetical example, let’s consider the
little known country of Transmogria. It is inhab-
ited by two peoples, the Talls and the Shorts. Talls
make up 60% of the population, Shorts the remain-
ing 40%.
Talls have had it their way for centuries. In conse-

quence they are generally wealthier than the Shorts,
and not surprisingly prefer policies of low taxation,
low public spending, no provision for the poor, and
no restrictions on employers in how they choose
their employees or how they deal with them.
The Shorts differ from the Talls on a huge va-

riety of issues: they want Fridays not Sundays as
their regular day off, anti-discrimination laws and
employee protection, a publicly funded health ser-
vice, and a better choice of housing. Most of all,
they want a say in how the country is governed – be-
cause under majority rule the Talls win the vote on
every single issue all the time.
The result: for as long as anyone can remember,

Transmogria has been in a state of civil unrest; the
Talls claim that the Shorts are criminal political ac-
tivists and protesters who continually resort to vio-
lence to achieve ends which “democracy” has ruled
out, while the Shorts see themselves as oppressed by
the Tall majority, and believe that their only recourse
is to the armed struggle.
Let us suppose that Talls would consider them-

selves to be at 1.0 on a zero-to-one scale of satisfac-
tionwith the current situation, but that they would be
at 0.0 if the Shorts somehow got into power. Like-
wise the other way round for the Shorts, currently at
a satisfaction of 0.0. This all means that the aver-
age satisfaction level under majority rule is 0.6, but
that the standard deviation across the population is
0.49. Surely there’s a better and fairer way to organ-
ise things than this.

2.1.2 No compromise

Recently a few brave people have migrated into
Transmogria from the neighbouring country of Cen-
tralia. Appalled by what they found, they set up a
small political party, the Compromisers, who, while
they have the good of the whole population at heart,
still only form 5% of the population. At significant
cost to themselves, they have put forward a mani-
festo of tolerance and co-operation.
However, in every constituency only 20% of the

Talls and 20% of the Shorts are prepared to vote for
the Compromisers over their own party. These vot-

ers are divided randomly between the Talls and the
Shorts in proportion to their occurrence in the pop-
ulation. The rest put their own party first, although
they would happily put the Compromisers second
over the opposition. The Compromisers vote for
themselves first (believing they are a worthy cause
with good intent) and equally for each of the other
two second. The vote therefore splits as shown be-
low — in the table we show not only each voter’s
first preference but also his second and third:

Percentage of voters:
45.6 13.9 30.4 10.1 0 0

voting:
1st: T C S C S T
2nd: C T C S T S
3rd: S S T T C C

Table 1: The votes cast in an election between
Tall, Short, and Compromiser. Each column
shows the percentage voting for a particular
order.

Since 45.6% of the voters placed the Tall can-
didate first (but only 30.4% placed the Short first
and 24.0% placed the Compromiser first), in an MR
election the Tall candidate would win.
However, one way to look at these votes is to ex-

amine which candidate would win in a head-to-head
contest between any two candidates; if it should be
the case that one candidate beats any other candidate
in a head-to-head fight, it would be reasonable to
hold that that candidate should be elected top. Let us
therefore examine the table of preferences between
pairs of candidates, which looks as follows:

Percentage of the population preferring c1 to c2 :

c2

T S C
T − 59.5 45.6

c1 : S 40.5 − 30.4
C 54.4 69.6 −

Table 2: The pairwise preference table for the
election of Table 1.

Thus we see that C would beat each of the other
two parties in a straight two-candidate fight (as
54.4% of the voters prefer him to T and 69.6% pre-
fer him to S) – such a candidate is known as a “Con-
dorcet winner” - but under majority rule T always
wins, with the result just as if the Compromisers had
never existed. The only way C can win under MR is
if tactical voting occurs – but Transmogrians would
like to be straightforward and honest, and not have
to engage in practices that require guessing the be-
haviour of the rest of the population.
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In conclusion T wins under MR, even though
more than half the population would have pre-
ferred C.

2.2 Arrow’s theorem

Now suppose that, in the light of these problems, the
Transmogrians decide to replace majority rule by
some other more sophisticated system that takes into
account not only the first preference of each voter
but also the rest of their orderings of the candidates.
A number of options, such as Single Transferable
Vote and other forms of proportional representation
come tomind; they are determined to pick a fair sys-
tem which also has no incentive for tactical voting.
Unfortunately, they immediately hit a brick wall

in the form of Arrow’s theorem (named after Ken-
neth Arrow who proved it in the 1940s – see Arrow
(1963)), which roughly says that no such system ex-
ists (a precise statement follows shortly).
Arrow’s theorem, however, deals only with de-

terministic electoral systems. In these systems each
voter votes by placing the candidates in order of
preference, and the system then provides an out-
put ordering of the candidates in which no two are
ranked equal, as in all the systems we are consider-
ing; however where the system is deterministic, the
output ordering is determined purely by the votes –
if identical votes are cast in two elections, the output
ordering will be the same in both.
His theorem proves that there is no determinis-

tic electoral system which has even the following 4
minimal desirable properties, known as Arrow’s ax-
ioms:
‘No Dictator’ (ND): there is No Dictator. In any

system it would be a disaster if some voters were
treated preferentially to others; one of the worst pos-
sible situations would be if the system treated one
particular voter D as a ‘Dictator’, meaning that what
D votes is automatically the result of the election.
‘Universal Domain’ (UD): if each individual

voter votes legally, the system will output a valid
election result. Thus for example UDwould exclude
a system that insisted on annulling the election if no
candidate had an overall majority. It would also ex-
clude a system that limited the number of candidates
to 2.
‘Irrelevant Alternatives’ (IIA): whether the sys-

tem outputs candidate c1 above candidate c2 de-
pends only on how the voters ordered candidates c1

and c2, not about where they placed any other candi-
date c3 (i.e. the output takes no account of Irrelevant
Alternatives).

‘Weak Pareto’ (WP): if everybody in the popu-
lation prefers candidate c1 to candidate c2, then so
should the output of the system (this is known as the
Weak Pareto condition).
Even though these properties are relatively simple

and obviously desirable, Arrow’s theorem tells us
that we cannot have them in a deterministic electoral
system. In particular it tells us that Single Trans-
ferable Vote, numerous other forms of Proportional
Representation, and of course the British majority-
rule system, cannot meet these simple requirements.
Fortunately, Arrow’s theorem applies only to de-

terministic electoral systems, i.e. ones in which a
particular set of votes always results in a particu-
lar outcome. In order to achieve a good electoral
system, therefore, we have to ‘think out of the box’
and move to a system in which some other factor, as
well as the votes, influences the results of the elec-
tion. That other factor must be one that carries no
bias, and allows the system to meet an appropriate
set of axioms that should ideally include Arrow’s
four (ND, UD, IIA, and WP), but which should also
include other much stronger axioms (such as SV
(Symmetry among Voters) which requires that all
voters are treated equally).
The factor that the Transmogrians are looking for

is randomness. We will introduce this again by way
of an example.

2.3 A simple alternative method for the
two-candidate situation

We bring in this example first as a two-candidate sit-
uation, and later expand it.

2.3.1 The two-candidate probabilistic election

Returning to our two-candidate situation in Trans-
mogria, consider the following simple but perhaps
unexpected electoral system.
As before, we have two candidates in each con-

stituency - a Tall and a Short. The Talls vote for the
Tall candidate, while the Shorts vote for the Short
candidate. Thus the vote splits:

Percentage:

60.0 40.0
1st: T S
2nd: S T

Table 3: The votes cast in an election between
Tall and Short.

Now we draw a random ordering of the candi-
dates, with probability 0.6 of picking T> S, and 0.4
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of picking S > T, according to the fractions of the
voters voting each way. Therefore T is elected with
probability 3/5, and S with probability 2/5. Thus,
supposing an election is to be held every year, in
roughly three years out of five the constituency will
be represented by a Tall, and in two out of five, it
will be represented by a Short.
Thus the fraction of the time that the constituency

is represented by a Tall will be equal to the frac-
tion of Tall voters, and the fraction of the time it is
represented by a Short will be equal to the fraction
of Short voters. This abolishes the permanent rule
by a majority over a large minority, while still be-
ing ‘fair’, in that an outcome occurs with probabil-
ity proportional to the fraction of voters that favour
it. As an illustration of the idea that this is fairer
than MR, consider the spread of expected satisfac-
tion across the population. Under the MR system
the Shorts always have a satisfaction of 0.0 while
the Talls always have a satisfaction of 1.0 giving
a standard deviation of expected satisfaction across
the population of 0.49; under this non-deterministic
system the Shorts have an expected (average) satis-
faction of 0.4 while the Talls have an expected satis-
faction of 0.6, giving a standard deviation across the
population of only 0.1 – thus satisfaction is being
dealt out more evenly across the population. True,
the overall average satisfaction has gone down from
0.6 to 0.52 – but this is a small price to pay for mak-
ing the results fairer.
Before moving to the three-candidate situation,

let us address two worries that are likely to occur
to many readers.

2.3.2 Interlude to address the worries of how a
random number can be chosen without
abuse

Some people will immediately be worried about
how such a random choice can be made without
abuse; after all, we all know how difficult it can be
to get two children to accept a coin toss as a decision
between their preferences.
A suggestion is that we could adopt something

like the following procedure.
The UK lottery machine (which is carefully ar-

ranged so that the number of balls can be checked
at the beginning) is used to draw a random sequence
of five balls out of a hundred. Each has a number
between 0 and 99. The result is a ten-digit num-
ber. This is used to seed a pseudo-random number
generator in a computer program which everybody
in the country can inspect, replicate, and run. A ran-
dom number x is then drawn from the generator in a

prescribed way such that it is uniformly distributed
between 0 and 1 (i.e. 0 < x ≤ 1). If 0 < x ≤ 0.6
then T is elected, otherwise S is elected. Everybody
in the country is able to check the result, as they
have all watched the draw on television. Specifically
the candidates (and an audience) can be present at
the draw to verify that the procedure was carried out
rather than the television transmission synthesised to
deceive. Since everybody can inspect the software,
everybody can check that it is fair.
This procedure is capable of setting up sequences

of random numbers as well as individual ones, so
that any computer software requiring random num-
bers can be initialised in this manner.

2.3.3 Interlude to address how things work in
parliament

If we employ the above method in a two-party situ-
ation with many constituencies, each electing a can-
didate to represent it in parliament, then we have
an ongoing problem when votes are taken in par-
liament. If decisions in parliament are still taken by
majority rule, we will probably fail in our desire to
reduce differences in satisfaction between different
parts of the community.
To see this, consider Transmogria, voting as

above with only the Talls and the Shorts present.
Suppose there are 600 seats in parliament, elected
using the probabilistic system described in section
2.3.1 above. In most years, we will see roughly 360
Tall and 240 Short members of parliament, varying
by roughly 30 seats either way. Only once in every
few thousand years will there be a Short majority in
parliament. Therefore if the Talls want to pass a law
that door handles should always be mounted six feet
off the ground, they will succeed.
However, if parliament also passes or rejects bills

in the same random way that MPs are elected, the
fact that the Talls nearly always have a majority is
less of a problem. The high-door-handle bill will be
passed with probability 0.6 rather than 1.0.
However there are further considerations. If a few

years later a contrary bill is introduced, insisting that
door-handles are always mounted six inches off the
ground (and repealing the old law), it will pass with
probability0.4; in this case this sequence of events is
reasonably fair, though a right nuisance for builders
and carpenters and those who have to pay for the
door-handles to be moved.
The situation could however be much worse: the

Talls might propose a bill to demolish the 5000-
year-old historic Palace of the Shorts, or bomb the
neighbouring country of Dwarfland. If the bill is
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rejected (which it will be with probability 0.4), the
Talls may reintroduce it, again and again, until it is
passed once – after which it is too late to redress the
situation. Indeed the probability that it will eventu-
ally be passed converges to 1 as the number of rein-
troductions approaches infinity.
Therefore, procedure, in particular the process

whereby bills are introduced for consideration by
parliament, also needs to be regulated, if probablis-
tic methods are also to be used in parliament. Al-
ternatively, Amar (1984) believed that majority rule
could be retained in parliament without losing the
value of having probabalistic election of the repre-
sentatives, whileWichmann (2009) believes that this
issue is better dealt with by Human Rights legisla-
tion.
The issue of how parliamentary votes are con-

ducted is an issue we will not address further in this
paper, but which needs further thought. If stabil-
ity of legislation is to be achieved, participants will
have to achieve greater degrees of consensus than
occur at present in parliamentary democracies.

2.4 Desirable axioms

We will now expand our horizons to take in elec-
tions with more than two candidates, and elections
in which we may be electing more than one of the
candidates. In all cases we will be interested in the
whole of the outcome ordering of the election, even
though not all candidates are being elected.
First, however, we need to consider what axioms

we want our new probabilistic electoral system to
satisfy.
The following axioms are potential candidates.

All are more precisely defined in the appendix sec-
tion 9.
‘Symmetry among Voters’ (SV): Each voter is

treated identically; if the views of two voters are
swapped, the probability of any given result should
be unchanged.
‘Symmetry amongCandidates’ (SC): Each can-

didate is treated identically. If a set of votes V leads
to election result Q with probability p and Vc1↔c2

denotes those votes with every voter’s views on can-
didates c1 and c2 swapped, and Qc1↔c2

denotes the
result Q with the positions of candidates c1 and c2

swapped, then if the voting is Vc1↔c2
the probability

of getting resultQc1↔c2
should be p .

‘Universal Domain’ (UD): If each voter has
voted legally, then the collection of all voters’ votes
is legal and the electoral system will output a valid
election result.

‘Clarity of Voting (Pairwise)’ (CVP): The best
way for a voter to achieve candidate c1 > candi-
date c2 is to vote c1 > c2 (i.e. the probability of the
output ordering placing candidate c1 > candidate c2

should be equally maximised by any vote that places
candidate c1 > candidate c2 ).
‘Representative Probability’ (RP): the proba-

bility of the outcome putting candidate c1 above
candidate c2 should be the same as that of a ran-
domly chosen voter preferring candidate c1 to can-
didate c2. In other words, the probability of the out-
come putting one candidate above another should be
the same as the fraction of the voters preferring the
one to the other.
We believe that these axioms cover most of what

is required of an electoral system, but not quite all,
as we shall see later. They are in particular sufficient
to imply Arrow’s axioms WP, ND, and IIA, where
we restate the last as:
‘Independence from Irrelevant Alternatives’

(IIA): The probability that the system places can-
didate c1 above candidate c2 should depend only on
the voters’ orderings of candidates c1 and c2 and not
on where they place any other candidates.
We should particularly note the subtle differences

between CVP and two related axioms CVT and
CVO, which we state adjacent to each other here
for easy comparison. In each case the phrase “The
best way to achieve X is Y” means that the probabil-
ity that X occurs in the output ordering is (equally)
maximised by any vote that satisfies Y.
‘Clarity of Voting (whole Ordering)’ (CVO):

The best way for a voter to achieve a particular or-
dering of the candidates in the result is to vote for
that ordering of the candidates.
‘Clarity of Voting (Pairwise)’ (CVP): The best

way for a voter to achieve candidate c1 > candidate
c2 is to vote c1 > c2.
‘Clarity of Voting (Top)’ (CVT): The best way

for a voter to achieve candidate c1 being placed top
in the output ordering is to place him top in that
voter’s vote.
These axioms turn out not to be equivalent. The

system known as ‘Random Dictator’ (described be-
low in section 2.6) satisfies all three of the CV ax-
ioms, while ‘Maximum Entropy Voting’ (described
below in section 2.9) satisfies CVP but not CVO or
CVT. ‘Sequential Random Dictator’ (described be-
low in section 2.7) obeys CVO and CVT but not
CVP. Unfortunately, there turn out to be significant
disadvantages associated with the knownmethods of
complying with all three of the CV axioms.
We will keep as a ‘Standard List of Axioms’

(SLA) that a system should obey the following: SV,
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SC, UD, and RP. A system obeying SLA then also
obeys WP, ND, IIA, and CVP by virtue of obeying
RP.

2.5 More than two candidates – preamble

Consider again the situation in Transmogria after the
immigration of some Centralians, previously con-
sidered in section 2.1.2. The voting pattern we are
dealing with is:

Percentage of voters:
45.6 13.9 30.4 10.1 0 0

voting:
1st: T C S C S T
2nd: C T C S T S
3rd: S S T T C C

Table 4: The votes cast in the same election as in
Table 1.

The question is how our new electoral system
should set the probabilities with which it outputs
each of the six possible orderings of the candidates.
The key difference between the two-candidate sit-

uation and those where there are more candidates is
the following. In the two-candidate situation there is
only one system that obeys RP (namely the one de-
scribed in section 2.3.1). It turns out that when there
are more candidates, there are an infinite number of
systems that obey SLA (our Standard List of Ax-
ioms, which of course includes RP). We will now
consider a few such systems, and one that doesn’t
obey SLA.

2.6 The ‘Random Dictator’ system

Considering the election of Table 4, we ask again
how the probabilities of the different outcome order-
ings should be set. The first possible answer (though
not necessarily the best) is to set the probabilities of
the various orderings to be the same as the fractions
of the voters voting for each ordering. This is some-
times known as the ‘RandomDictator’ (RD) system,
as it is equivalent to the following procedure:
Everybody casts their votes; then

A voter is picked at random and the out-
put ordering of the election is set to be the
ordering given by that voter.

Since the voter who is picked gets his own views
output by the electoral system, he is known as the
‘dictator’ (the ‘random dictator’ since he was cho-
sen at random). Note that this system does obey the
No Dictator (ND) axiom – there is no (fixed) voter

who can dictate the outcome (the ‘random dictator’
is chosen at random each time an election is held).
This procedure has the benefit of extreme simplic-

ity. There is also a total absence of any computa-
tional difficulty beyond choosing a random member
of the electorate. RD is very easy to understand.
RD also satisfies all the axioms so far considered.
This procedure, however, has some important dis-

advantages.

2.6.1 No compromise

The RD system can elect to top position only can-
didates whom some voter has put in top position.
There is no possibility of placing a candidate who is
everybody’s second choice at the top, even though
they may be preferred to any other candidate by a
majority of the electorate (i.e. be a Condorcet win-
ner).

2.6.2 No moderation – or ‘It never rains but it
pours’

Suppose a population consists of 50% Tall voters
and 50% Shorts. Suppose, moreover, that there are
ten candidates from each of these parties (a total
of 20 candidates) of whom a total of eight will be
elected (the eight at the top of list). Each voter
places all the candidates from his party in some or-
der at the top of the list, followed by those of the
other main party.
In this situation the RD system as it stands will

elect either eight Talls, or eight Shorts – but never a
mixture of the two. This characteristic is the oppo-
site of moderation.
The situation could be even worse if there is a

small minority of “Exclusive Talls” who want to
shoot all the Shorts, and who also field 10 candi-
dates. With a 1% proportion of Exclusive Talls there
would be a 0.01 probability that every single elected
candidatewould be an Exclusive Tall.

2.7 The ‘Sequential Random Dictator’
(SRD) system

One approach which might at first sight ameliorate
the ‘No Moderation’ defect of the Random Dictator
system is the ‘Sequential Random Dictator’ (SRD)
system.
In this system the candidate to be placed top in

the output ordering is selected according to the same
technique as employed by the RD system. How-
ever, rather than then taking the dictator’s views on
second, third and subsequent placings, the candidate
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placed top is removed from everybody’s votes, and a
new voter is chosen at random to be dictator 2. The
candidate at the top of dictator 2’s ordering (which
has already had the candidate placed overall top re-
moved from it) is then elected in second place. We
continue selecting a new dictator at random until all
places in the ordering are filled. This system avoids
the lack of moderation described in section 2.6.2
above by changing the dictator after each place has
been filled.
Moreover, this modification to RD is easily seen

to result in SRD still obeying SV, SC, UD, ND,
WP, and CVT. Let us consider whether it obeys RP
and/or CVO and/or CVP; in other words roughly “Is
it fair?” and “Is there an incentive for tactical vot-
ing?”.

2.7.1 Does Sequential Random Dictator obey
Representative Probability?

Recall that ‘Representative Probability’ (RP) states
that the probability of the output distribution yield-
ing candidate c1 > candidate c2 should be equal to
the fraction of the population so voting. It is obeyed
by RD, so it is perhaps slightly surprising that it is
not obeyed by SRD. This is easily seen from the fol-
lowing table of voting on three candidates A, B, and
C, and the probabilities of the output giving each or-
dering underneath, under the RD system and under
the SRD system:

Percentage of voters giving each order:
50.0 0 0 0 0 50.0

1st: A A B B C C
2nd: B C A C A B
3rd: C B C A B A
RD prob: 0.50 0 0 0 0 0.50
SRD prob: 0.25 0.25 0 0 0.25 0.25
Table 5: The votes cast in an election between
A, B, and C and the outcome distributions
under Random Dictator and Sequential Random
Dictator systems.

The resulting pairwise preference table for the
voters is:

Percentage of the population preferring c1 to c2 :

c2

A B C
A − 50.0 50.0

c1 : B 50.0 − 50.0
C 50.0 50.0 −

Table 6: The pairwise preference table for the
election of Table 5.

However, the SRD output distribution pairwise
preference probability table is:

Probability that output prefers c1 to c2 :

c2

A B C
A − 0.75 0.5

c1 : B 0.25 − 0.25
C 0.5 0.75 −

Table 7: The pairwise preference table for the
outcome distribution under the SRD system in
the election of Table 5.

Thus, although half the population voted A>B,
the probability of the output ordering under SRD
giving A>B is three-quarters. This is contrary to
RP and gives a severe disadvantage to B; it also il-
lustrates how some simple modifications of systems
that obey all the axioms can fail to obey even basic
ones.

2.7.2 Does SRD obey CVO and CVP?

It is relatively easy to show that SRD does obey
CVO, but not CVP. We omit the proofs for brevity,
given that SRD has already been shown to be want-
ing by failing to obey RP.

2.8 A conjecture
We conjecture that any probabilistic social welfare
function satisfying SLA and CVO and CVT induces
RD as the induced probabilistic decision scheme on
any subset of the candidates chosen after the votes
are cast.
Note that Gibbard (1977) and McLennan (1980)

have together shown that SLA and SP2 (defined in
the appendix section 9) are sufficient to ensure that
RD is indeed induced.

2.9 The ‘Maximum Entropy Voting
System’ (MEV0)

2.9.1 Description

Axioms to be complied with

Returning now to our Standard List of Axioms, we
will restrict our attention to those systems that do
satisfy SLA; we will not require adherence to CVO
or CVT, since we have not been able to find a sys-
tem that obeys these also without suffering the dis-
advantages of the Random Dictator system. There
will of course be some disadvantages to not obeying
CVO and CVT, in the form of susceptibility of some
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properties of the output distribution to some forms
of tactical voting; however no tactical voting will be
able to influence the probability that one candidate
is preferred by the system to another, because as we
have seen SLA implies CVP.

The principle of minimising information

The basic idea and motivation are as follows. The
problems with RD, notably the lack of moderation
noted in section 2.6.2, stem from taking too much
information from the votes – with RD, the outcome
distribution matches the voter distribution too pre-
cisely. We want to reduce the information taken
from the votes to a precise set of variables, the min-
imum set needed to ensure that RP is satisfied. Fur-
ther, as it will turn out that restricting the informa-
tion taken from the votes to precisely that set of vari-
ables is not sufficient to specify the system uniquely,
we will turn our attention to that system in which the
votes also give us the minimum amount of informa-
tion about the ordering that will actually be chosen.

Two senses of the word information

There is quite a subtle distinction here between
two uses of the word information, which we will
dwell on briefly as it is important to what follows.
If the system’s output depends only on the table

of the fractions of the voters who prefer each candi-
date to each other candidate (forN candidates this is
a total of N (N − 1)/2 independent numbers), and
if no two distinct such tables lead to the same out-
put distribution, then in the first sense of the word
information we have defined precisely which infor-
mation we have taken from the votes. However,
there are many systems that could be based on tak-
ing only this information from the votes (and that
satisfy SLA), hence precisely defining the informa-
tion taken from the votes is insufficient to uniquely
specify the electoral system.
There is however, a second sense of the word

information. If I tell you that there has not been
an earthquake in London today, I am telling you
little information, but if I tell you that there has
been one, I am telling you a lot. Equally if I tell
you at least one African died today, nobody will be
surprised (because little information has been con-
veyed), while if I tell you that not a single African
has died today, it will be newsworthy because a lot
of information has been conveyed. In this sense the
amount of information conveyed is greater if after
receiving it our knowledge is very different from
what it was before.

Now, let us consider an example. Suppose that
there are six Tall candidates and six Short. Suppose
also that we believe in advance that half the popula-
tion prefers all the Tall candidates to all the Shorts,
while the other half prefers all the Shorts to all the
Talls, whilewithin each group (Tall or Short) all vot-
ers are equally likely to have any preference. Sup-
pose moreover that the voters do so vote. Whereas
RD can only output highly polarised orderings with
all Shorts above all Talls, or vice versa, there are
other probability distributions over the output order-
ings which also satisfy RP: for example, the uniform
distribution over all possible output orderings. RP
simply requires (for this particular voting pattern)
that for any pair of candidates, the output is equally
likely to place one above the other as the other way
round. If under this uniform distributionwe were to
find all the Talls above all the Shorts, this would be
a considerable surprise, and the occurrence of this
event would be newsworthy, i.e. carry a lot of infor-
mation in comparison with finding one of a number
of nondescript orderings. As we will see, MEV0
will indeed output all the possible orderings with
equal probability – minimising the surprise, and the
information content of the output ordering about the
votes, while still adhering to RP.
However, information content does depend on

prior belief. Reverting to a two candidate election
with one Tall and one Short candidate, suppose,
strictly hypothetically, that we were to believe in ad-
vance that the Tall candidate is almost certain to be
elected. Suppose then the votes, combined with the
electoral system in use, confirm that the Tall can-
didate has been elected. Then in the second sense
of the word information (the information-theoretic
sense), the votes have supplied little information
(that we didn’t already know) about the result of the
election. If however the Short candidate is elected,
the votes have supplied comparatively more infor-
mation. Therefore in the following paragraph we
confine our attention to prior beliefs that are sym-
metric among the candidates.

Minimal informationmeans minimal surprise

Let us now suppose that in advance our beliefs
about the votes are symmetric among the candi-
dates; i.e. we may believe that it is more likely that
the voters will align into two camps than that there
will be an equal number voting for each candidate,
but if so, we believe that it is equally likely that the
two camps are favouring candidates A and B, as that
they favour A and C, or B and C. Under these cir-
cumstances we also aim to minimise the informa-
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tion about the result ordering given by the votes.
(Not to require the symmetry among candidates in
our prior beliefs about the votes risks violating SC
in the resulting system.) In other words we want
the outcome of the election to be as unsurprising as
possible, given whatever candidate-symmetric prior
knowledge about voting patterns we may have had,
while of course maintaining compliance with SLA.

What we give up when we go for minimal
surprise

We should note here that in deliberately choos-
ing to go for minimal information, and hence min-
imal surprise, we are deliberately saying we want
one general sort of outcome rather than another.
Suppose there is a religious minority in Transmo-

gria, the Narrows, who form 1% of the population.
Suppose the Narrows will only be happy if their 10
candidates occupy all the top 10 positions in the out-
come ordering; getting a mere 9 candidates in the
top 10 positions is something they would regard as
an outcome tainted by heresy, and no better than
having all of their candidates come bottom.
Under RD the Narrows will be happy 1% of the

time – just as they form 1% of the population – be-
cause 1% of the time, under RD, Narrow candidates
will occupy all the top 10 places in the outcome or-
dering. However, the Narrows will not like a system
that minimises information conveyed, because it is
extremely unlikely to yield the very surprising out-
come that a party with a tiny minority of support
gets all its candidates in the top positions.
IntroducingMEV0 is an action of people who do

not want such surprising outcomes; it must be re-
alised that introducingMEV0 will reduce the possi-
bility of minorities such as the Narrows ever being
happy.

A somewhat more mathematical point of view

From a mathematical point of view, for any given
system and for any set of votes, the system gives a
set of probabilities on the set of orderings of the can-
didates, which are non-negative and which sum to 1.
If there are N candidates, there are N ! orderings,
and the possible probability distributions may be
represented as points in N !-dimensional real space
RN!; in fact they all lie in a (N !− 1) -dimensional
simplex that lies obliquely across the corner of the
positive ‘quadrant’ of this space. Let U denote this
simplex.
Now, given a particular set of votes, adherence to

RP implies that the set of points that could be occu-

pied by the outputs of systems adhering to SLA lies
within a hyperplane satisfying N (N − 1) /2 linear
constraints; let U0 denote the intersection of this
hyperplane and U .
There are many ways to place the output of such

a system within U0 and still ensure that it satisfies
SLA. Some we might consider are the mean of U0,
the point in U0 that is closest to the origin, etc –
indeed almost any point that can be distinguished
without specifically referring to any voter or any
candidate. So how are we going to choose one?
Now, there is a quantity called entropy (of a prob-

ability distribution over e.g. a finite set T ) that mea-
sures the uncertainty we have about a choice of ele-
ments of T . If the distribution puts probability 1 on
one element of T and none on the others, the distri-
bution has zero entropy; the uniform distribution on
T will have the maximum amount of entropy possi-
ble. Entropy is in an important sense the opposite of
information (in its second sense): when we acquire
information about a quantity, on average we reduce
the entropy of the distribution that describes what
we now know about that quantity.
Thus if we want to choose a distribution inU0 that

minimises the amount of information about the out-
put orderingwe are supplying,we should choose the
distribution in U0 that has maximum entropy. For-
tunately it turns out that this specifies a unique dis-
tribution.
Another way of looking at this is to note that RD

is not at all moderate (as noted in section 2.6.2).
So we may ask what is the most moderate distri-
bution we can find in U0? One might argue that the
most moderate distribution is the one that mixes in
as many different output orderings as possible, while
still adhering to RP. This again leads us to the distri-
bution in U0 that has maximum entropy. Let us call
that distribution u1 .
Therefore we choose to define theMaximumEn-

tropy Voting system (MEV0) (the 0 (zero) is intro-
duced because we will in a future paper define vari-
ants of MEV) as that system which outputs an order-
ing chosen at random from the distributionu1 in U0

that has maximum entropy. That distribution, of all
those in U0, ensures that the votes give us least in-
formation about the actual ordering that will finally
be output by the system when the random draw from
u1 is made, ensures that that ordering will be as un-
surprising as possible, ensures that we know exactly
what properties of the votes are being extracted and
used, and in an important sense is the most moderate
distribution consistent with obeying RP.
A more formal definition of MEV0 is given in an

appendix (section 9) and a discussion of implemen-
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tation will follow in section 5 below.

2.9.2 Example

Taking the three-candidate problem of section 2.1.2
as an example, let’s see how the Compromiser party
fares under MEV0. The voting pattern is, as before,
to within rounding error, given in Table 8 along with
the outcome probability distribution under MEV0:

Percentage voting each ordering:
45.6 13.9 30.4 10.1 0 0

voting:
1st: T C S C S T
2nd: C T C S T S
3rd: S S T T C C
MEV0 Prob: 0.247 0.238 0.095 0.212 0.099 0.111
Table 8: The voting pattern as in Table 1, along
with the outcome distribution under the Maxi-
mum Entropy Voting system.

In this result we see that the probability of the
Compromiser being elected top is not zero (as it was
with Majority Rule), or 0.24 (as it would be with
RD), but 0.45 (i.e. 0.238 + 0.212). That this higher
value is more appropriate is seen from the pairwise
preferences table for the population:

Percentage of the population preferring c1 to c2:

c2

T S C
T − 59.5 45.6

c1 : S 40.5 − 30.4
C 54.4 69.6 −

Table 9: The pairwise preference table for the
voters in the election of Table 8.

which shows that Compromisers are preferred by a
majority of the population to any other single candi-
date (and they are the only candidate with this sta-
tus). In contrast, the Talls are elected top with prob-
ability 0.358 and the Shorts with probability 0.194.
One can of course also verify that RP is being met,
by calculating the pairwise preference table for the
outcome distribution and showing that it is identical
to that for the votes.

2.10 The spectrum from ‘Random
Dictator’ to ‘Maximum Entropy
Voting’

Now, when we defined MEV0, we specified essen-
tially two things. First, a set of constraints that the
MEV0 output distribution must satisfy (leading to a
set U0 of potentially satisfactory distributions), and

second, a rule by which to choose which distribu-
tion in U0 we should draw the output ordering from,
namely the maximum entropy rule.
There are many ways we could specify the set of

constraints. At one end of the spectrumwe could say
that the probability of the output distribution giv-
ing each particular ordering should be the same as
the fraction of the voters giving that ordering – this
would define the RD system, as there would then
be only one distribution in U0 . At the other end
of the spectrum we could require adherence to RP
only, yielding the MEV0 system. In between there
are a variety of other sets of properties in which we
could require the output distribution to match the
votes distribution.
For example, one could specify that the output

system should also give the same probabilities of or-
dering all subsets of three candidates in each of the
six possible ways for each such subset as the voters
did. (For a three-candidate election, that would in
fact force the system to be RD, but for more can-
didates such a system would be distinct from RD).
Alternatively, one can allow the voters to express
their preferences not just as a set of pairwise pref-
erences (which is all that is taken from the orderings
by MEV0), but also by optionally stating combina-
tions of pairwise preferences that they want to occur
together (e.g. c1 > c2 and c1 > c3).
In each case there are two technical constraints

that we must ensure are satisfied, namely non-
emptiness of the set U0 of potentially satisfactory
distributions, and convexity of that set. Provable
non-emptiness is required because otherwise we
cannot guarantee to meet UD (there may be some
voting patterns for which there is no possible out-
put distribution), and we choose to require convexity
because otherwise we may not be able to prove that
the maximum entropy rule chooses a unique distri-
bution.
Now, non-emptiness of the set of potentially satis-

factory distributions is guaranteed for any such sys-
tem by the fact that the RD output distribution, in
all senses equal to the vote distribution, matches the
vote distribution in all the properties we might con-
sider incorporating. Convexity will be guaranteed
providing the constraints specified are of the form

P (outcome ordering has propertyX) =
P (the ordering of a randomly chosen voter has propertyX)

where the equality can be replaced by a non-strict
inequality in either direction.
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3 Measures of satisfaction under
MEV0

In the Transmogrian two-candidate election dis-
cussed in section 2.1.1 we noted that, under major-
ity rule, the mean satisfaction of the population was
0.6 and the standard deviation of satisfaction level
across the population was 0.49. Now, it may eas-
ily be seen that if any probabilistic system obeying
SLA is used (and there is in fact only one such sys-
tem in a two-candidate election, namely that intro-
duced in 2.3.1, which coincides with both RD and
MEV0 in this setting), the mean satisfaction of the
population will be 0.52 while the standard deviation
of expected satisfaction level will be 0.1. Though
there is some reduction in average satisfaction, sat-
isfaction is much more fairly distributed through the
population.
In situations where there are more than two can-

didates, we now ask whether similar improvements
can be obtained from probabilistic systems such as
RD and MEV0.
In order to get an empirical measure of the bene-

fits of probabilistic systems we simulated elections
on four candidates, and considered various ways in
which the voters’ opinions on individual candidates
might combine to give an overall satisfaction with
an outcome ordering. We ran 400 different elections
(different sets of votes) and drew 500 random sam-
ples from the output distributions of each election
under each system (for majority rule all 500 random
samples were of course the same, sincemajority rule
is a deterministic system).
For each election, we started off by simulating

the opinions of the voters. The details of how this
was done are in an appendix (section 10 below). In
each election, the voters were clustered in 8 differ-
ent broad clusters in their opinions, with the posi-
tions of the clusters being randomly distributedwith
a tendency to avoid neutral opinions. This resulted
in each voter having a score (the “input score”) be-
tween zero and one for each candidate, indicating
how much they liked that candidate.
We then deduced from these scores the order that

the voters would place the candidates in when voting
(assuming that each voter votes his true opinions).
We then applied each electoral method to the

votes, and deduced the output ordering distribution.
We drew 500 sample results from the distribution
for each election, each of which is an ordering of
the candidates.
It was then necessary to consider how satisfied

an individual voter would be with any specific out-

put ordering. We considered three different ways in
which the output ordering might be combined with
the voter’s scores on the candidates to give an over-
all satisfaction rating for each voter.
In the following definitions, the words ‘rank’,

‘score’, and ‘correlation’ will have the following
meanings.
‘Rank’ means 1 for the top candidate, 2 for the

candidate in 2nd place, etc.
‘Score’ refers to either input score as described

above, or to an output score derived from the output
ordering by drawing a uniform-random score vector
from those score vectors that would place the can-
didates in the chosen output ordering; in the latter
case score has the intuitivemeaning that it is the de-
gree of satisfaction the system’s output ordering had
with that candidate, just as input score is the indi-
vidual voter’s degree of satisfaction with the can-
didate. More formally, if there are N candidates,
then the unit hypercube IN inRN may be identified
with the possible sets of scores on the candidates,
and each point in it thus mapped to a particular or-
dering of the candidates. Given a particular output
ordering of the candidates, the output score was then
drawn uniform-randomly from that subset of IN that
is mapped to the given output ordering.
‘Correlation’ between two vectors means the co-

sine of the angle between the two vectors. Thus if
the two vectors point in the same direction (e.g. two
rankings of the candidates are identical) the corre-
lation will be +1. If they point in exactly opposite
directions in RN it will be−1.
The three methods by which opinions on individ-

ual candidates were combined to give a voter’s over-
all satisfaction with the result of the election were
then as follows:

1. Correlation of output rank with voted rank
(RankCorrel) (which might be expected to
give the advantage to MEV0 or RD);

2. Correlation of output score with voted score
(ScoreCorrel) (where the output score is as ex-
plained above);

3. Input score of the candidate most preferred
by the result ordering (Winner’sScore) (which
might be expected to give the advantage to
MR).

For each measure of satisfaction, a number of de-
scriptive statistics were calculated and used to sum-
marise the characteristics of how satisfaction was
distributed among the voters and between elections.
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We choose to name these statisticsunfairness, aver-
age satisfaction,macrovariation,microvariation,
and immoderation. Their precise definitions are
given in the appendix section 11 below.

“Unfairness” captures the degree to which we can
expect different members of the population to be
disgruntled with the electoral system to differing ex-
tents – we would like this number to be small, in-
dicating that everybody can expect to be similarly
satisfied over the long term.

“Average satisfaction” is self-explanatory – it is
an average over everything, and the bigger it is the
better.

“Immoderation” captures the degree to which the
system is likely to produce extreme outcomes; for
example, a system that is immoderate without being
unfair is one which given a 50/50 split of the elec-
torate either has all the elected candidates coming
from one party, or all from the other, but never a
mix – so we would like immoderation to be small.

Finally “macrovariation” and “microvariation”
capture different aspects of how the system causes
variable degrees of satisfaction as the random num-
ber generator seed ω changes; “microvariation” cap-
tures the variability with ω seen by an individual
voter, while “macrovariation” captures the variabil-
ity with ω of average satisfaction over the popula-
tion. For a deterministic system these two quantities
will of course be zero. Ideally we might wish these
parameters to be small – but as we have seen, Ar-
row’s theorem prevents us meeting SLA and having
zero values of macro- and micro-variation.

The results for one particular set of 400 elec-
tions on 4 candidates, of which 500 samples each
were examined, were as follows. Changing the pa-
rameters of the distributions generating the voters’
scores made only small differences to these results,
and none to the relative magnitudes. A bar-chart is
shown in Figure 1 (page 33).

Method of measuring satisfaction
RankCorrel ScoreCorrel Winner’sScore

unfairness (small is good):
MEV0 0.0746 0.0186 0.155
RD 0.0762 0.0280 0.157
MR 0.256 0.0801 0.297

average satisfaction (large is good):
MEV0 0.547 0.512 0.536
RD 0.548 0.521 0.537
MR 0.613 0.517 0.589

macrovariation (small is good):
MEV0 0.0722 0.0259 0.0742
RD 0.0703 0.0257 0.0721
MR 0 0 0

microvariation (small is good):
MEV0 0.274 0.0840 0.243
RD 0.287 0.0984 0.245
MR 0 0 0

immoderation (small is good):
MEV0 0.273 0.0805 0.288
RD 0.289 0.0992 0.293
MR 0.256 0.0801 0.297
Table 10: The various statistics of the three mea-
sures of satisfaction under the Maximum En-
tropy Voting (MEV0) system, the Random Dic-
tator (RD) system, and the Majority Rule (MR)
system. Explanations of the statistics (unfairness,
..., immoderation) are given in the preceding text,
while their precise definitions are given in ap-
pendix section 11.

The level of estimated uncertainty in these statis-
tics is mostly small compared with the differences
between them.
It is interesting that MEV0 causes less unfair-

ness than the other two systems whichever satis-
faction measure was used (and a lot less unfair-
ness when assessed by score correlation). Similarly
MEV0 is less immoderate than RD, whichever sat-
isfaction measure is used. To ‘pay’ for this reduc-
tion in unfairness, MEV0 loses only around 10%
on average satisfaction (more like 1% if satisfaction
is measured by score correlation) compared with
MR (as the price of adhering to sensible axioms),
but it does of course introduce introduce micro- and
macrovariation because of its non-deterministic na-
ture; nonetheless the macrovariation is small.
Puzzling over why there was not more differ-

ence in the immoderation statistic between RD and
MEV0, we experimented with other ways of dis-
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tributing the voters’ mean scores. It turned out
that while we could never get the immoderation of
MEV0 to exceed that of RD, or be below that of
MR (except when assessed on Winner’sScore only),
there are scenarios where there are much bigger dif-
ferences in immoderation. One such is shown in
Figure 2 (page 34). Here, voters’ opinions were ar-
ranged such that there was a high probability of vot-
ers either viewing candidates 1 and 3 as much bet-
ter than candidates 2 and 4, or viewing candidates 2
and 4 as much better than candidates 1 and 3; such
a situation occurs in real life where both candidates
and voters are distributed on different ends of the
political left to right axis. Again, the details of how
voters’ opinionswere distributed are in the appendix
section 10.
Thus we see that in both scenarios both MEV0

and (to a lesser extent) RD cause vastly less unfair-
ness than the Majority Rule system. In Transmogria
this should lead to less social unrest. The reductions
in average satisfaction are very small compared with
the large benefits obtained by reducing unfairness
while avoiding immoderation.

4 Tactical voting under MEV0

MEV0 does not obey CVO and CVT (proof not
given). It is therefore possible that voters interested
primarily in getting a particular ordering as the re-
sult of an election, or more likely, interested in get-
ting a particular candidate top of the ordering, may
be able to gain by voting other than their true opin-
ion. What MEV0 does guarantee is that they cannot
by tactical voting increase the probability of their
favoured candidate being above any other specified
candidate; the scope for gain by tactical voting is
therefore likely to be fairly limited.
For example, if somebody desiring A > B > C

as the ordering of candidates A, B, and C, and who
especially desires that A should come top, knows
that B is the most popular candidate, they could con-
sider votingA> C> B instead. This would slightly
increase the probability of A coming first – but it
would also make it more likely that C will come
first, and C is this voter’s least favoured candidate.
What it will not do is make any difference to the
probability that A will beat B or the probability that
A will beat C.
The weaknesses of MEV0 in this regard are likely

to be more prominent in situations where only one
candidate is being elected from a constituency, as
opposed to all the candidates being elected in some
order, or several candidates being elected. One

might think that elections where only one candidate
is being elected would be better addressed by con-
sidering the election output to be non-strongly or-
dered with the top candidate > all the others, and
all the others equal to each other, and then requiring
RP to apply. To get the benefits of MEV0 one would
however have to interpret the voters’ orderings in the
originalway. This distinction unfortunately leads to
the RD distribution not satisfying the new RP condi-
tion, and to elections where there is indeed no output
distributionpossible that satisfies this new version of
RP.

5 Implementation of MEV0

So far we have discussed the theoretical basis of
MEV0 and its benefits and drawbacks in various sit-
uations. We next turn to how the necessary calcula-
tions can actually be carried out in practice. While
for RD essentially the only issue is how to choose a
voter uniform-randomly from the population of vot-
ers, with MEV0 we have a significantly more diffi-
cult problem.
We suggest two usable approaches. Neither

is perfect and there is plenty of scope for better
methods of implementation to be developed. Both
are presented as a rough verbal description rather
than as precise mathematics. Software that carries
out each of these implementations (in the Matlab
language) can be downloaded from the directory
http://www.inference.phy.cam.ac.uk/sewell.
As above, letN denote the number of candidates.

5.1 Implementation for lowN

The first approach is to calculate the distribution
u1 explicitly. This means calculating the proba-
bility under u1 of each possible output ordering
of the candidates. Since there are N ! such order-
ings, this is a calculation that will necessarily take
(at the very least) N ! operations. Since 20! is
about 2,432,902,008,176,640,000, it can be seen
that this approach will take rather a long time for
a 20-candidate election. However, where the num-
ber of candidates is under about 7, such an ap-
proach is feasible. The definition of MEV0 leads,
via the Lagrange multiplier technique, to a set of
non-linear simultaneous equations on the N ! prob-
abilities to be determined, plus some non-negativity
constraints.The non-negativity constraints are usu-
ally redundant in practice, as the value of u1 is only
zero on those orderings which give a pairwise com-
parison favoured by zero of the voters. These or-
derings can be eliminated at the start; elsewhere the
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gradient of the entropy becomes infinite as any in-
dividual probability approaches zero, pointing to-
wards that probability being positive.
The problem is then one of solving the set of non-

linear simultaneous equations, and as such a range
of techniques is available in the literature. One so-
lution is embodied in sim1.m on the web site men-
tioned above.
Once we are at a point where the constraints are

satisfied and the gradient of the entropy is normal
to the set of points satisfying the constraints, that
point is the output distribution. Since it is a discrete
distributionwe can take a random sample from it by
inverting the cumulative distribution function, and
using a uniform random variate. The random sample
thus taken is an ordering on the candidates, which
we deliver as the output ordering.

5.2 Implementation for larger N
As discussed in section 5.1, the above technique
is excessively computationally intensive when the
number of candidates rises above about 7. Under
these circumstances we must resort to a different
method.
By considering a Langrange-multiplier solution

to the relevant constrained maximisation problem,
u1 may be shown to be of the following form:

u1(t) = Ke





∑

i,j:i>j

λi,jdi,j(t)





where K is a constant and i and j index the can-
didates. Therefore, if we know the values of the
λi,j , we may sample from u1 using a Markov Chain
Monte Carlo algorithm, (e.g. Metropolis-Hastings,
using proposal distributions that simply interchange
two candidates in the current sample of t).
A possible approach, then, is to initialise the

λi,j to random values, run such an MCMC algo-
rithm yielding a pile of non-independent samples,
assess for each pair (i, j) whether the current frac-
tion of the samples in which ci > cj is too big or
too small, and adjust each λi,j upward if the frac-
tion needs increasing or downwards otherwise. Such
an iterative approach will eventually converge ap-
proximately (under the assumptions that each com-
ponent MCMC run is ‘sufficiently long’, the step
size for adjusting the λi,j is ‘sufficiently small’,
etc). It is possible to assess how accurately the con-
straints are currently being met at each point in the
run. Nonetheless, it would be better to find a non-
iterative perfect sampling system (for example one

using Fill’s algorithm); we have so far not been able
to.
It turns out that the choice of proposal distribution

used is important. If there is inadequate mixing,
such a scheme does not converge. Software imple-
menting the best approach that we know of is avail-
able in sim2.m in the same directory on the web
(see section 5 above).
The limiting factor that governs convergence of

sampling in such an approach seems to be that one
requires a large number of samples of the ordering
at any one of values of the λi,j to get accurate esti-
mates of the fraction of samples preferring one can-
didate to another. However good a proposal distribu-
tion is used, it would seem that an MCMC approach
with feedback to the λi,j will always have running
speed limited in this way.
In practice such a system has been developed and

tested for up to 40 candidates. If such an approach
were to be used in practice it would be necessary to
set precise criteria for when convergence could be
considered adequate.

6 How could one set about introducing
such a system?

In the grand scheme, the MEV0 system itself (and
the RD system likewise) could be implemented
in two parts: the election of local candidates to
be members of parliament, and the application of
MEV0 (or RD) to parliamentary procedure. It would
probably be best to introduce the election to par-
liament first, reserving the somewhat more difficult
procedural issues until experience had been gained
in electing the members.
However, it is clear that substantial education

of the population on the benefits would be neces-
sary, and before any public election, suitable trials
on smaller and more restricted elections would be
needed. Such smaller elections could be surveyed to
assess the real satisfaction of voters with the differ-
ent systems, which might help the public to accept
the necessity of randomisation to achieve fair elec-
tions.

7 Discussion

We have thus seen that probabilistic voting systems
(both “decision schemes” and “social welfare func-
tions”) can reduce the unfairness to minorities that
occurs with majority rule. We have seen how the
impasse of Arrow’s theorem may be circumvented
by such systems.
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We assumed as obvious that we must have sym-
metry among both voters and candidates and uni-
versal domain, and that our system should respect
unanimous opinions (i.e. obey the weak Pareto con-
dition). We then saw (from Gibbard’s and McLen-
nan’s results) that addition of strategy-proofness im-
mediately restricts us to using the Random Dicta-
tor system (at least as far as the induced decision
scheme goes), which has the serious drawbacks that
it is completely unable to compromise and can be
very immoderate in its results.
We therefore chose instead to add the much

weaker axiom of representative probability (RP) and
to output (ultimately) an ordering on the candidates
rather than just the name of the top candidate, even
if our real aim is to elect only one candidate. Im-
plicit in doing so is the decision that some degree
of satisfaction will be afforded to voters by their de-
sired candidate coming e.g. 2nd rather than 3rd, even
if only one candidate is being elected (even though
one of the authors (IM) has argued strongly against
this in the past). Given RP we are guaranteed also
pairwise clarity of voting (CVP), but fromGibbard’s
results we know that this is nowhere near as strong
an axiom as strategy-proofness, and we have also
made it clear that this does not imply clarity of vot-
ing on the top position or on the output ordering.
In choosing between the many possible systems

which obey just these axioms (SV, SC, UD, RP),
we concentrated on the one that offers the least ele-
ment of surprise in the results given any candidate-
symmetric prior beliefs, and saw how this is the one
that minimises the information taken from the votes
and maximises the entropy of the output distribu-
tion. This system is MEV0, the basic “maximum
entropy voting” system.
MEV0 was shown in experimental simulations to

provide very much less unfairness than majority rule
while diminishing overall average satisfaction very
little. Inevitably any probabilistic system must in-
crease micro- and macro-variation compared with
any deterministic system (which has none). Sim-
ilarly a probabilistic system would be expected to
increase immoderation when compared with major-
ity rule (although in fact this is not true if “Win-
ner’sScore” is used as the satisfaction measure);
nonetheless MEV0 causes much less increase in im-
moderation than Random Dictator does.
Neither RD nor MEV0 guarantees to elect a Con-

dorcet winner. We have however seen from exam-
ples that MEV0 is usually much more likely than
RD to do so where one exists. What both do guar-
antee is that to the extent that the Condorcet win-
ner wins unanimously, to that extent also he will be

placed higher than the others in probability.
The one real weakness of MEV0 that we are

aware of is the ability of a political party to increase
the chances of the top elected candidate belonging
to itself by flooding the candidate list with lots of
its own candidates – i.e. the difficulty of “candidate
loading”. Note, however, that this does not mean
that any one of these candidates has any favour com-
pared with any other candidate, from that party or
otherwise. The difficulty of combating this problem
lies largely in the difficulty of detection of “mem-
bership” of a party, as this may not be formal (e.g.
membership of the “party” of those who have lots
of spare time). There is also an argument to say
that if there are more people of one persuasion will-
ing to give up their time to politics then they should
each be given their fair chance. The main reason
that RD does not suffer from candidate loading is
that it avoids all compromise – and we believe that
avoiding compromise is bad. We hope to publish a
future paper discussing in detail the possibilities of
ameliorating the issue of candidate loading.
A major difficulty with MEV0 is that it is hard for

the average voter to understand. However, in gen-
eral it is not necessary for the voter to understand
more than that he should place the candidates in or-
der according to his true beliefs. Indeed, the fact that
the system is hard to understand should be a strong
disincentive to tactical voting, as the effects of tac-
tical voting will be very difficult to predict (and of
course it cannot alter the pairwise outcome proba-
bilities anyhow).
Discussion of alternative electoral systems should

of course also consider some of the other long-
standing attempts to do better than majority rule, for
example Single Transferable Vote (STV). It is the
authors’ hope that consideration of the two candi-
date scenario, as in sections 2.1 and 2.3 above, will
suffice to convince the reader that without recourse
to a probabilistic system one cannot avoid the in-
herent unfairness of majority rule, whichever of the
other deterministic systems one may adopt.
Others may object that MEV0 is likely to elect

middle-of-the-road candidates and avoid any firm
leadership (as is also claimed against most other
ways of avoiding majority rule). Only real experi-
ment and time will show whether this is true, and
any systemwhich promotes compromise can be crit-
icised in this way – if you don’t like compromise,
then use Random Dictator, and take a small risk of
getting a few years of extremist rule! However it
is our hope that use of MEV0 would lead to a need
to reach agreement by genuine discussion that con-
siders the needs of all parties, before voting, to a
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greater extent than under majority rule. Only then
can one be reasonably sure of what the outcome of
the vote will be.
Finally, since the readership of Voting matters are

particularly familiar with STV systems, we com-
ment on the relationship between our RP axiom
and the concept of Droop Proportionality (Woodall
1994):

Droop proportionality criterion (DPC): If
there are |V | voters and an election is to
elect M of the available N candidates
then we define the Droop Quota to be
|V |

M+1 , and require that for any k, m ∈ N
with 0 < k ≤ m, and for any subset C0

of the set of candidates C , if more than
k |V |

M+1 voters place all members of C0 in
one of the top m places in their ranking,
then at least k members of C0 should be
elected.

The DPC is a very different concept of pro-
portionality to RP. To see this, consider the case
|V | = 2, m = 1, k = 1 (i.e. a 2-candidate election
to elect one candidate). Then any election satisfy-
ing the DPC must elect whomever gets more votes.
In other words DPC requires fallback, in the 2-
candidate situation, to the MR system – totally dif-
ferent from the RP requirement that the probabil-
ity of electing each of the two candidates should be
proportional to the number of voters preferring that
candidate.
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Figure 1: Satisfaction statistics in simulated elections. Of the three MR is most unfair and least variable,
while MEV0 is least unfair, is less immoderate and microvariable than RD, and has very similar

immoderation to MR (here labelled FPTP).
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Figure 2: An election similar to that of Figure 1, but where there is a correlation between voter groups and
candidates along an (e.g. left-right) axis.
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9 Appendix - Formal description of
Maximum Entropy Voting

In this appendix we describe the axioms and the
MEV0 system formally.

9.1 Definitions of the axioms

Let C denote the (finite) set of Candidates, and N
the number of candidates.
Let V denote the (finite) set of Voters, endowed

with the uniform probability measure PV .
Let T denote the set of strong total orderings6 on

C , and W the set of total orderings on C . Small
letters will denote members of the sets denoted by
capitals.
Let X denote the set of possible sets of votes by

the voters. Then X = WV .
Let U denote the set of probability distributions

on T , and D denote the set of probability distribu-
tions on C .
Let Ω denote the underlying probability space

(think of this as the set of possible seeds for the
random number generator, of very large uncount-
able size), and PΩ the associated probability mea-
sure (which we will denote simply P when there is
no ambiguity).
Let J denote the set of permutations of C ,

and ρ : J → WW be the function such that for
all c1, c2 ∈ C and any w ∈ W , c1 ≤ρ(j)(w) c2 iff
j (c1) ≤w j (c2).
We define a probabilistic decision scheme (PDS)

by abuse of notation as either a measurable
function f : X → D or as a measurable func-
tion f : X × Ω → C ; it will always be clear
which is meant by the number of arguments.
We define a probabilistic social welfare function
(PSWF) by abuse of notation as either a measurable
function f : X → U or as a measurable function
f : X × Ω → T (similarly). In both cases we will
only be interested in schemes/functions that addi-
tionally meet certain axioms yet to be defined. (We
assume in both cases that all subsets of X are con-
sidered measurable.)
We say that a PSWF f : X × Ω → T induces

a PDS f
′

: X × Ω → C
′

on a subset C
′

of C

6 We will say that t is a “total” ordering iff
(∀c1, c2 ∈ C) (c1 ≥t c2 or c2 ≥t c1)
(i.e. for any pair of candidates either one is above the other

or it is below the other, but can’t be unrelated to the other; in
contrast to a “partial” ordering).
We will say that t is a “strong” ordering iff
(∀c1, c2 ∈ C) ((c1 ≥t c2 and c2 ≥t c1) ⇒ (c1 = c2))
(i.e. the ordering can’t rank two distinct candidates as equal).

iff for all x ∈ X, ω ∈ Ω, and c
′

∈ C
′ , we have

f
′

(x,ω) ≥f(x,ω) c
′ .

For the purpose of defining the SP axioms we de-
fine a utility function as a function from C, D, T, or
U to R (the real line). A utility function g : D → R
is defined to be risk-neutral if there exists a util-
ity function h : C → R such that for all d ∈ D,
g(d) = Eω∈Ω,c∼dh(c) = Σx∈Ch(c)d(c), i.e. if the
value of g (d) depends only on the mean of the util-
ity of c under h when c is distributed according to
d. If so, then g will be said to be the utility function
on D induced by h. In an exactly similar way we
define the concept of a risk-neutral utility function
on U . We define all utility functions on C and T to
be (vacuously) risk-neutral.
Given this background the axioms are then de-

fined for a probabilistic social welfare function f as
follows:
SV: For any permutation j of V and any x ∈ X ,

f (x) = f (x ◦ j).
SC: For any j ∈ J , any x ∈ X, and any ω ∈ Ω,

f (ρ (j) ◦ x,ω) = ρ(j) ◦ f (x,ω).
UD: (this is automatically met by any PSWF de-

fined as above).
RP: For any c1, c2 ∈ C, any x ∈ X , then

PΩ

(

c1 ≤f(x,ω) c2

)

=
PV

(

c1 <x(v) c2

)

+ 1
2PV

(

c1 =x(v) c2

)

,

where <w and =w have the obvious meanings de-
rived from the (not necessarily strong) ordering
w ∈ W written≤w.
IIA: For any c1, c2 ∈ C , and [for any x1, x2 ∈ X

such that for all v ∈ V , c1 ≤x1(v) c2⇔ c1≤x2(v)c2],
then PΩ

(

c1 ≤f(x1,ω) c2

)

= PΩ

(

c1≤f(x2,ω)c2

)

.
WP: For any c1, c2 ∈ C and any x ∈ X ,

(

(∀v ∈ V )
(

c1 ≤x(v) c2

)

⇒ PΩ

(

c1 ≤f(x,ω) c2

)

= 1
)

.
CVP: For any c1, c2 ∈ C, v ∈ V , and [for

any x1, x2 ∈ X such that [for all v
′

∈ V \ {v}
and all c

′

1, c
′

2 ∈ C, c
′

1 ≤x1(v
′) c

′

2⇔ c
′

1≤x2(v
′) c

′

2]],
c1 ≤x1(v) c2⇒ PΩ

(

c1≤f(x1,ω)c2

)

≥ PΩ

(

c1≤f(x2,ω)c2

)

.
CVT: For any c1 ∈ C, v ∈ V , and [for any

x1, x2 ∈ X such that [for all v
′

∈ V \ {v} and all
c
′

1, c
′

2 ∈ C , c′

1 ≤x1(v′) c
′

2⇔ c
′

1≤x2(v′) c
′

2]],

(

(∀c2 ∈ C)
(

c1 ≥x1(v) c2

))

⇒ PΩ

(

(∀c2∈ C)
(

c1≥f(x1,ω)c2

))

≥ PΩ

(

(∀c2∈ C)
(

c1≥f(x2,ω)c2

))

.

CVO: For any t ∈ T, v ∈ V , and [for any
x1, x2 ∈ X such that [for all v′ ∈ V \ {v} and all
c
′

1, c
′

2 ∈ C ,
c
′

1 ≤x1(v
′) c

′

2⇔ c
′

1≤x2(v
′) c

′

2]],

x1 (v) = t ⇒ PΩ (f (x1,ω) = t) ≥ PΩ (f (x2,ω) = t).
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SP (for PDSs (also denoted f)): For any risk-
neutral utility functions g : D → R, h : C → R
such that g is induced by h, and for any v ∈ V , and
[for any x1, x2 ∈ X such that [for all v′ ∈ V \ {v}
and all c

′

1, c
′

2 ∈ C, c
′

1 ≤x1(v′) c
′

2⇔ c
′

1≤x2(v′) c
′

2]],
(

(∀c1, c2 ∈ C)
(

c1 ≥x1(v) c2⇔ h (c1)≥ h (c2)
))

⇒ g (f (x1))≥ g (f (x2)).
SP1 (for PSWFs): For any risk-neutral utility

functions g : U → R, h : T → R such that g is in-
duced by h, and for any v ∈ V , and [for any
x1, x2 ∈ X such that [for all v

′

∈ V {v} and all
c
′

1, c
′

2 ∈ C , c
′

1 ≤x1(v
′) c

′

2⇔ c
′

1≤x2(v
′) c

′

2]],

((∀t ∈ T ) (h (x1 (v)) ≥ h (t)))
⇒ g (f (x1)) ≥ g (f (x2)).

SP2 (for PSWFs): For any non-empty C
′

⊆ C
the PDS f

′

induced by f on C
′

satisfies SP.
SLA: f is a PSWF that satisfies SV, SC, and RP.

9.2 Definition of Maximum Entropy
Voting

We use the same notation as in section 9.1.
Each voter casts his vote by giving a total ordering

(not necessarily strong) on C .
Let si,j be the fraction of the votes that prefer ci

to cj , where ci, cj ∈ C ; a voter that rates two candi-
dates equally preferable counts as half a vote in each
direction, and where i = j we will set si,j = 1

2 . Let
S denote the matrix composed of the si,j .
Now let T be the set of strong total orderings on

C .
Then for each t ∈ T we define pairwise prefer-

ence variables di,j (t) which are 1 if ci is preferred
to cj under t (i.e. if ci >t cj ), 1

2 if i = j, and 0
otherwise.
Now let U be the set of probability distributions

on T . Then for each u ∈ U , we define a matrix
D (u) whose elements di,j (u) are the probability
that under a random ordering t drawn from u can-
didate ci is preferred to candidate cj , and which are
given by

di,j (u) =
∑

u (t) di,j (t).
The map B that maps u toD (u) is linear7 .
Now let B−1 ({S}) denote the subset U0 of U

such that u ∈ U0 iff u ∈ U and Bu = S. U0 is
thus the set of distributions on T that satisfy the con-
straints imposed by RP. U0 is convex since it is the

7 i.e. for any two non-negative real numbersα and β which
sum to 1, and any u1, u2 ∈ U ,

B (αu1 + βu2) = D (αu1 + βu2) =
αD (u1) + βD (u2) = αB (u1) + βB (u2) .

intersection of a convex set with the inverse image
of a single-point set under a linear map.
We next want to establish thatB−1 ({S}) is non-

empty, and to that end will exhibit an element u0 in
it. Let u0 denote the distributionon T defined as fol-
lows: u0 (t) is the probability that a randomly cho-
sen voter orders the candidates according to t. (Vot-
ers who vote with a non-strong ordering are divided
up into several equally-weighted fractional voters
who vote with each of the contributory strong or-
derings.) (Intuitively u0 is the output distribution of
the RD system.)
Then Bu0 = S, therefore U0 ,= ∅.
Now consider the function f : U → R defined by

f (u) = −
∑

t∈T

u (t) log (u (t))

f gives the entropy of a distribution u on T . Then
f is readily verified to be a strictly concave func-
tion on U . Moreover the gradient of f is infinite in
magnitude wherever any point value u (t1) of u ap-
proaches zero, and is then pointing away from the
surface u (t1) = 0. Therefore f has a single maxi-
mum on any convex subset of U , and in particular
on U0.
Let

u1 = argmaxu∈U0
f (u),

i.e. u1 is the distribution on T of maximum entropy
which satisfies Bu1 = S.
We will then define the distribution of outcomes

from the MEV0 system to be u1; to obtain the ac-
tual ordering that is the outcome, we draw a random
sample t1 from u1.

9.3 Axioms adhered to

MEV0 satisfies the following axioms:
SV, SC, UD, WP, IIA, ND, RP, CVP.
Moreover MEV0 uses only the information in S

(the pairwise preference probability matrix) from
the votes, and no other. Under MEV0, and any
candidate-symmetric prior on the votes, the infor-
mation about the output ordering in the votes is as
low as is possible for a system consistent with RP.
Moreover it is the unique method with this overall
combination of properties.
Stated slightly differently, MEV0 is the unique

system meeting SLA which uses only, and all of,
the pairwise preference probabilities from the votes,
and produces an output distribution on the orderings
containing as little information about the output or-
dering consistent with the preceding properties.
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9.4 Proofs
SV, SC, UD are obvious.
RP holds because Bu1 = S.
RP implies CVP, since if we wish to maximise

the probability that the result prefers candidate ci to
candidate cj , we need to ensure that (Bu1)i,j = si,j

is maximised. But si,j is the fraction of the voters
that prefer ci to cj , and all that we can do to max-
imise that is ensure that we vote ci above cj . RP also
implies IIA and ND trivially.
To prove WP, note that if all candidates prefer ci

to cj , then si,j = 1, and hence almost all t1 (i.e. all
but some with total probability 0 under u1) prefer ci

to cj , so the probability of the result preferring ci to
cj is 1.
It is clear that no information from the votes is

used other than S, since the only information de-
rived from the votes that enters the system is S. On
the other hand, since S is deducible from u1, all the
information in S is also in u1.
Nonetheless the number of bits of information

that the votes contain about the ordering, I (T ; V |y),
given the choice of voting system y, takes a value
defined by the relevant probability distributions, and
the equation

I (T ; V |y) =
∫

P (t, v|y) log2
P(t|v,y)
P(t|y) d (t, v),

where we envisage the probabilistic model relating
the variables that is shown in Figure 3. Moreover,
despite the fact that all the information about T
comes through S, I (T ; V |y) does vary with y.
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Figure 3: Relationships between the variables
at an election.

Now, we have some prior distributionon the votes
P (v)which is candidate-symmetric, and some fixed
choice of system y to be determined, from the set Y
of systems that obey SLA and take only the pairwise
probability matrix S from the votes. For any fixed
v there is only one possible value of S, and for any
fixed value of S and any choice of system y ∈ Y
there is only one possible value of u. We assert that
MEV0 is the system y̆ given by

y̆ = argminy∈Y I (T ; V |y).
Indeed we have

y̆ = argminy∈Y

∫

P (v) P (t|v, y) log2
P(t|v,y)
P(t|y) d (t, v)

y̆ = argminy∈Y (
∫

P (v) P (t|v, y) log2P (t|v, y) d (t, v)
−

∫

P (v)P (t|v, y) log2P (t|y) d (t, v))

But since P (v) has been assumed to be
candidate-symmetric, and y obeys SLA, P (t|y) is a
constant varying neither with t, v, nor y. Moreover
P (t|v, y) integrates over t to 1 for any fixed v and
y (as it is a probability distribution), and P (v) inte-
grates to 1 for the same reason. Therefore the second
term above does not vary with y, and we have

y̆ = argminy∈Y I (T ; V |y)
= argminy∈Y

∫

P (v)P (t|v, y) log2P (t|v, y) d (t, v)
= argmaxy∈Y

∫

P (v)H (T |v, y) dv

whereH (T |v, y) = −
∫

P (t|v, y) log2P (t|v, y) dt,
the entropy of the output distribution. But our choice
of the MEV0 system for y uniquely maximises
H (T |v, y) for any fixed v, and hence uniquely
maximises

∫

P (v) H (T |v, y) dv no matter what
candidate-symmetric distributionP (v) may be.
That concludes the proofs of the formal properties

of MEV0. Illustrations of how it differs from RD in
practice are in sections 2.9, 3, and 4 above.

10 Appendix – Simulation of voters’
opinions

For the purpose of the simulated elections of section
5 above, we simulated voters’ opinions as follows.
We describe first the set of elections whose results
are shown in Table 10 and Figure 1, and then indi-
cate how the second set of elections (of Figure 2)
differs.
We created eight voter interest groups. For each

group we drew a mean score xc on each of the
four candidates independently from a Beta distribu-
tion with parameters 0.5, 0.5. For each group we
also drew independently a single strength of opinion
value y from a Gamma distributionwith parameters
m = 2, r = 0.1.
We assigned each of 50 voters randomly to one

of the eight voter interest groups. Each voter’s
score on each candidate c was then drawn inde-
pendently from a Beta distribution with parameters
yxc, y (1 − xc), with xc and y being the parameters
appropriate to that voter’s voter interest group. Thus
themean score for a voter on candidate cwas the ap-
propriate group’sxc, and when y was large the score
distribution was tighter around xc than when y was
small.
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The overall effect is therefore that the voters’
opinions are clustered in eight clusters of varying
tightness, with both tightness and position of the
clusters in opinion space varying from one simu-
lated election to another. In this first election the
position of the clusters, though tending to be nearer
edges and corners than in the centre of the 4-d hy-
percube, are in a sense unprincipled – i.e. there is
no link between the opinions of voters in different
groups.
For the second set of elections, instead of using a

Beta(0.5, 0.5) distribution for each xc, we used ei-
ther a Beta(2, 0.5) or a Beta(0.5, 2) distribution, ac-
cording to whether the parity (oddness or evenness)
of the candidate number matched or did not match
respectively that of the voter group number8 . Thus
we may think, for example, of the odd numbered
candidates as being “right-wing” and the even num-
bered candidates as being “left-wing”, and similarly
for the voter groups; left wing voters are unlikely
to think highly of right wing candidates (and vice
versa). As we have seen, this set of elections brings
out to a rather greater extent howMEV0 ameliorates
RD’s tendency to immoderation.

11 Appendix – Statistics used to
describe profile of satisfaction with
results of simulated election

For each measure of satisfaction, the following
statistics were calculated:

1. Ev∈V,m∈M,ω∈Ω (a (v, m,ω)), where M is the
set of elections, V the set of voters, Ω the set
of seeds of the random number generator, and
a (v, m,ω) the satisfaction of voter v in elec-
tionm using random seed ω, and where E de-
notes expectation; we refer to this statistic as
“average satisfaction”;

2. Em∈M (stdv∈V (Eω∈Ω (a (v, m,ω)))), where
also std denotes standard deviation; we refer
to this statistic as “unfairness”;

3. Em∈M (Eω∈Ω (stdv∈V (a (v, m,ω)))); we re-
fer to this statistic as “immoderation”;

4. Em∈M (stdω∈Ω (Ev∈V (a (v, m,ω)))); we re-
fer to this statistic as “macrovariation”;

5. Em∈M (Ev∈V (stdω∈Ω (a (v, m,ω)))); we re-
fer to this statistic as “microvariation”.
8 The Beta(0.5, 0.5) distribution has two equal peaks near 0

and near 1 as well as a lesser amount of probability in the middle,
while the Beta(0.5, 2) distribution is missing the peak near 1 and
the Beta(2, 0.5) distribution is missing the peak near 0.
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