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1 Introduction

Olli Salmi, in a posting to an Election Methods list [6],
has suggested a new quota-preferential election rule,
which is developed slightly further in this article, and
which is remarkably similar to the Single Transferable
Vote (STV) in its effects. I shall call it QPQ, for Quota-
Preferential by Quotient. Both in its properties and in
the results it gives, it seems to be more like Meek’s ver-
sion of STV [2] than the traditional version [3]. This is
surprising since: (i) in marked contrast with STV, the
quota in QPQ is used only as a criterion for election,
and not in the transfer of surplus votes; (ii) QPQ, unlike
Meek’s method, involves no iterative processes, and so
the votes can be counted by hand; and (iii) QPQ derives
from the European continental tradition of party list sys-
tems (specifically, d’Hondt’s rule), which is usually re-
garded as quite different from STV. I do not imagine
that anyone who is already using STV will see any rea-
son to switch to QPQ; but people who are already using
d’Hondt’s rule may feel that QPQ is a natural progres-
sion of it, and so more acceptable than STV.

D’Hondt’s rule for allocating seats to parties was
proposed by the Belgian lawyer Victor d’Hondt [1] in
1882. The seats are allocated to the parties one by one.
At each stage, a party with v votes and (currently) s
seats is assigned the quotient v/(1 + s), and the next
seat is allocated to the party with the largest quotient.
This continues until all seats have been filled.

Many variations of this rule were subsequently pro-
posed, in which the divisor 1 + s is replaced by some
other function of s. However, the next contribution of
relevance to us is an adaptation of d’Hondt’s rule to
work with STV-type preferential ballots. This adapta-
tion has been part of Sweden’s Elections Act for many

years; we will call it the d’Hondt–Phragmén method,
since it is based on a method proposed by the Swedish
mathematician Lars Edvard Phragmén [4, 5] in 1895.
The seats are again allocated one by one, only this time
to candidates rather than parties; at each stage, the next
seat is allocated to the candidate with the largest quo-
tient (calculated as explained below). In the event that
the voters effectively vote for disjoint party lists (e.g.,
if every ballot is marked for abcd, efg or hijkl), then
the d’Hondt–Phragmén method gives exactly the same
result as d’Hondt’s rule. However, it was introduced in
the Swedish Elections Act as a means of allocating seats
within a party, at a time when voters were allowed to ex-
press a choice of candidates within the party. It does not
guarantee to represent minorities proportionally.

Salmi’s contribution has been to introduce a quota
into Phragmén’s method. In this version, which he calls
the d’Hondt–Phragmén method with quota, the candi-
date with the largest quotient will get the next seat if,
and only if, this quotient is larger than the quota; oth-
erwise, the candidate with the smallest quotient is ex-
cluded, and the quotients are recalculated. In this re-
spect it is like STV. However, unlike in STV, this is the
only way in which the quota is used; it is not used in
transferring votes. QPQ, as described here, differs from
Salmi’s original version only in that the quota is defined
slightly differently, and the count is preferably restarted
after every exclusion.

Both the d’Hondt–Phragmén method (with or with-
out quota), and QPQ, can be described in terms of
groups of voters rather than individuals, and this is nat-
urally how one thinks when processing piles of ballots
by hand. But it seems to me that they are easier to un-
derstand when rewritten in terms of individual ballots
rather than groups, and they are described here in this
form. From now on, s denotes the total number of seats
to be filled.
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2 The details of QPQ

2.1. The count is divided into a sequence of stages. At
the start of each stage, each candidate is in one of three
states, designated as elected, excluded and hopeful.
At the start of the first stage, every candidate is hopeful.
In each stage, either one hopeful candidate is reclassi-
fied as elected, or one hopeful candidate is reclassified
as excluded.
2.2. At the start of each stage, each ballot is deemed
to have elected some fractional number of candidates,
in such a way that the sum of these fractional numbers
over all ballots is equal to the number of candidates who
are currently classed as elected. At the start of the first
stage, every ballot has elected 0 candidates.

2.3. At the start of each stage, the quotients of all
the hopeful candidates are calculated, as follows. The
ballots contributing to a particular hopeful candidate
c are those ballots on which c is the topmost hopeful
candidate. The quotient assigned to c is defined to be
qc = vc/(1+tc), where vc is the number of ballots con-
tributing to c, and tc is the sum of all the fractional num-
bers of candidates that those ballots have so far elected.

2.4. A ballot is active if it includes the name of a
hopeful candidate (and is a valid ballot), and inactive
otherwise. The quota is defined to be va/(1 + s − tx),
where va is the number of active ballots, s is the to-
tal number of seats to be filled, and tx is the sum of
the fractional numbers of candidates that are deemed to
have been elected by all the inactive ballots.
2.5a. If c is the candidate with the highest quotient, and
that quotient is greater than the quota, then c is declared
elected. In this case each of the vc ballots contributing
to c is now deemed to have elected 1/qc candidates in
total (regardless of how many candidates it had elected
before c’s election); no change is made to the number of
candidates elected by other ballots. (Since these vc bal-
lots collectively had previously elected tc candidates,
and they have now elected vc/qc = 1 + tc candidates,
the sum of the fractional numbers of candidates elected
by all voters has increased by 1.) If all s seats have now
been filled, then the count ends; otherwise it proceeds
to the next stage, from paragraph 2.3.
2.5b. If no candidate has a quotient greater than the
quota, then the candidate with the smallest quotient is
declared excluded. No change is made to the number
of candidates elected by any ballot. If all but s can-
didates are now excluded, then all remaining hopeful
candidates are declared elected and the count ends; oth-

erwise the count proceeds to the next stage, from para-
graph 2.3.

The details of the calculations of the quotients and
quota may become clearer from a study of Election 2 in
the next section.

The specification above contains two stopping condi-
tions, in paragraphs 2.5a and 2.5b. These are included
for convenience, to shorten the count. However, they
are not necessary; they could be replaced by a single
rule to the effect that the count ends when there are no
hopeful candidates left. We shall see below (in Propo-
sitions 5 and 6) that, left to its own devices in this way,
QPQ will elect exactly s candidates. It shares this prop-
erty with Meek-STV but not with conventional STV,
in which the stopping condition of paragaph 2.5b is
needed in order to ensure that enough candidates are
elected.

The most important proportionality property pos-
sessed by STV is what I call the Droop proportional-
ity criterion: if more than k Droop quotas of voters are
solidly committed to the same set of l > k candidates,
then at least k of those l candidates should be elected.
(Here the Droop quota is the total number of valid bal-
lots divided by one more than the number of seats to
be filled, and a voter is solidly committed to a set of l
candidates if the voter lists those candidates, in some
order, as the top l candidates on their ballot.) We shall
see in Proposition 7 that QPQ also satisfies the Droop
proportionality criterion.

We shall see in Proposition 4 that if two candidates a
and b are elected in successive stages, first a and then b,
with no exclusion taking place between them, then b’s
quotient at the time of b’s election is no greater than
a’s quotient at the time of a’s election. (Thus with
the d’Hondt–Phragmén method, which is essentially the
same as QPQ but with no quota and no exclusions, each
candidate elected has a quotient that is no greater than
that of the previous candidate elected.)

This is not necessarily true, however, if an exclusion
occurs between the elections of a and b. Consider the
following election.

Election 1 (3 seats)

16 ab, 12 b, 12 c, 12 d, 8 eb.

There are 60 votes, and so the quota is 60/4 = 15.
The initial quotients are the numbers of first-preference
votes; a, with a quotient of 16, exceeds the quota and is
elected. Now b’s quotient becomes (16 + 12)/2 = 14,
and this is the only quotient to change, so that no other
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candidate reaches the quota. Thus e is excluded. Now
b’s quotient becomes (16 + 12 + 8)/2 = 18, and so b
is elected with a quotient that is larger than a’s was at
the time of a’s election. This means that each of the ab
ballots was deemed to have elected 1

16 of a candidate
after a’s election, but only 1

18 of a candidate after b’s
election. This conveys the impression that these ballots
have elected a negative proportion of b, or else (perhaps
worse) that the b and eb ballots are being treated as hav-
ing elected part of a.

To avoid this, it is proposed here that the count should
be restarted from scratch after each exclusion. We shall
see below, in Proposition 8, that if c is the first can-
didate to be excluded, and the count is then restarted
with c’s name deleted from all ballots, then all the can-
didates who were elected before c’s exclusion will be
elected again (although not necessarily first or in the
same order). With this variant of the method, the count
is divided into rounds, each of which apart from the last
ends with an exclusion; the last round involves the elec-
tion of s candidates in s successive stages, with no inter-
vening exclusions. Now no ballot can ever be regarded
as contributing a negative amount to any candidate, or a
positive amount to a candidate not explicitly mentioned
on it.

With Meek’s method, a voter can tell from the result
sheet exactly how their vote has been divided between
the candidates mentioned on their ballot, and therefore
how much they have contributed to the election of each
candidate. QPQ does not explicitly divide votes be-
tween candidates; but with the multi-round version just
described, as with the d’Hondt–Phragmén method it-
self, a voter can tell from the result sheet what pro-
portion of each candidate they have elected; and mul-
tiplying these proportions by the final quota could be
regarded as indicating how much of their vote has gone
to each candidate, implicitly if not explicitly. For exam-
ple, suppose candidates a and b are elected with quo-
tients (at the time of election) qa > qb, candidate c is
hopeful to the end, and the final quota is Q. Then a
voter whose ballot (after the deletion of any excluded
candidates) reads abc has elected 1/qa of a, 1/qb−1/qa
of b, and was able to contribute 1/Q−1/qb towards the
election of c (which, however, was insufficient to get c
elected). And a voter whose ballot reads bac or bca has
elected 1/qb of b, nothing of a, and was again able to
contribute 1/Q − 1/qb towards the election of c. The
fact that the abc and bac voters make the same contri-
bution to c is a property that is shared with Meek-STV
but not with conventional STV.

3 Examples

The first of these examples is intended to clarify the
method of calculation of the quotients and quota.

Election 2 (3 seats)

5 a, 15 abc, 15 ac, 10 b, 15 bc,
20 c, 15 d, 5 e.

There are 100 votes, and so the initial quota is 100/4 =
25. The initial quotients are the numbers of first-
preference votes; a’s quotient of 35 is the largest,
and exceeds the quota, and so a is elected. Each of
the 35 ballots that has a in first place is deemed to
have elected 1

35
of a; 5 of these plump for a and

now become inactive, 15 have b in second place, and
15 have c in second place. So the quota now be-
comes (100− 5)/(4− 5

35) ≈ 24.62, b’s quotient be-
comes (25 + 15)/(1 + 15

35) = 28.0, and c’s quotient
becomes (20 + 15)/(1 + 15

35) = 24.5. Now b’s quotient
exceeds the quota, and so b is elected. Each of the 40
ballots that contributed to b’s election is deemed to have
elected 1

28 of a candidate in total; 10 of these plump
for b and now become inactive, and the remaining 30
have c in the place after b. So the quota now becomes
(100−5−10)/(4− 5

35
− 10

28
) ≈ 24.29, and c’s quotient

becomes (20 + 15 + 30)/(1 + 15
35

+ 30
28

) = 26.0. Now
c is elected. We can set out the count as follows.
Election 2

quotients quota result
a b c d e

Stage 1 35 25 20 15 5 25.00 a elected
Stage 2 – 28 241

2
15 5 24.62 b elected

Stage 3 – – 26 15 5 24.29 c elected

We have already mentioned that QPQ satisfies the
Droop proportionality criterion, which is one important
test of proportionality. The next two elections provide
another test of proportionality. In both of these there
are two parties, one with candidates a, b, c and the other
with candidates d, e, f . The voters vote strictly along
party lines. However, the abc-party voters all put a first,
b second and c third, whereas the def -party voters are
evenly divided among the three candidates. In Election
3, the abc party has just over half the votes, and so we
expect it to gain 3 of the 5 seats, whereas in Election 4 it
has just under half the votes, and so we expect it to gain
only 2 seats. We shall see that this is what happens.
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Election 3 (5 seats) Election 4 (5 seats)

306 abc 294 abc
99 def 103 def
98 efd 102 efd
97 fde 101 fde

In each case there are 600 votes, and so the quota is
600/6 = 100. In Election 3, after the election of
a, b and c the abc ballots become inactive, and, since
these ballots are electing 3 seats, the quota reduces to
294/(6− 3) = 98. The counts proceed as follows.
Election 3

quotients quota result
a b c d e f

Stage 1 306 0 0 99 98 97 100 a elected
Stage 2 – 153 0 99 98 97 100 b elected
Stage 3 – – 102 99 98 97 100 c elected
Stage 4 – – – 99 98 97 98 d elected
Stage 5 – – – – 981

2
97 98 e elected

Election 4
quotients quota result

a b c d e f
Stage 1 294 0 0 103 102 101 100 a elected
Stage 2 – 147 0 103 102 101 100 b elected
Stage 3 – – 98 103 102 101 100 d elected
Stage 4 – – 98 – 1021

2 101 100 e elected
Stage 5 – – 98 – – 102 100 f elected

We see that in each case the result is the one expected
by proportionality. This is the same result as is obtained
using STV (using the Droop quota—but not if the Hare
quota is used).

In a single-seat election, QPQ and STV both reduce
to the Alternative Vote. It is not clear how many seats
and candidates are needed for QPQ to give a differ-
ent result from Meek-STV, but here is an example with
three seats and five candidates.

Election 5 (3 seats)

12 acde, 11 b, 7 cde, 8 dec, 9 ecd.

There are 47 votes, and so the quota (in STV or QPQ)
is 47/4 = 11 3

4
. STV elects a with a surplus of 1

4
of

a vote, which goes to c. No other candidate exceeds
the quota, and so c, having the smallest vote, is ex-
cluded. Now d is elected with a surplus of 3 1

2 votes,
which all goes to e, causing e to be elected. In QPQ,
each candidate’s initial quotient is their number of first-
preference votes. So a is elected, and c’s quotient then
becomes (12 + 7)/2 = 9 1

2 . The candidate with the
smallest quotient is now d, and so d is excluded. If the
election is not restarted at this point, e now has a quo-
tient of 17 and is elected, and this gives c a quotient of
(12 + 7 + 8 + 9)/3 = 12 so that c is elected. If the
election is restarted after d’s exclusion, then e is elected
first, and then there is a tie between a and c for the sec-
ond place; whichever gets it, the other will get the third

place. So in all cases the results are: STV: a, d, e; QPQ:
a, c, e.

4 Proofs

In this section we will use the term single-round QPQ
to refer to the version where one does not restart the
count after an exclusion, and multi-round QPQ to refer
to the version where one does. In the event that no ex-
clusion occurs, both methods proceed identically, being
then equivalent to the d’Hondt–Phragmén method. ‘A
count in which no exclusions occur’ could refer to this
possibility, in which exclusions are absent by chance,
but it covers also the final round of a multi-round QPQ
count, which is guaranteed to be free of exclusions; this
final round is again equivalent to d’Hondt–Phragmén,
although applied to ballots from which some candidates
may already have been deleted.

It will be helpful to start by recalling some simple
inequalities.

Proposition 1. If m,n, x, y are positive real numbers
such thatm/n 6 x/y, then

m

n
6 m + x

n+ y
6 x

y
. (1.1)

If, in addition, y < n, then

m − x
n− y 6

m

n
. (1.2)

Proof. Since the denominators are all positive, the
conclusions are equivalent to the inequalities m(n +
y) 6 (m+x)n, (m+x)y 6 x(n+y), and (m−x)n 6
m(n− y). These all follow from the hypothesis, which
is that my 6 xn. 2

Proposition 2. During a multi-round QPQ count, the
quota never increases.

Proof. To obtain a contradiction, suppose that the
quota does increase at some stage, and consider the first
stage at which this happens. Let the quota at the start
of this stage be Q = va/(1 + s − tx), where va is the
number of active ballots at the start of this stage, and
tx is the sum of the fractional numbers of candidates
that are deemed to have been elected by all the inactive
ballots at the start of this stage. For each active ballot
that becomes inactive in this stage, the effect is to sub-
tract 1 from va and add t to tx, where t is the fractional
number of candidates that that ballot has elected. This
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number t is either 0 or 1/q, where q is the quotient pos-
sessed by some already-elected candidate at the time of
their election. In order for this candidate to have been
elected, necessarily q was greater than the quota at that
time, which we are supposing was at least Q. Thus in
all cases t < 1/Q. It follows that if x ballots become
inactive in the current stage, then the effect is to subtract
x from va and add a number y < x/Q to tx. Let Q′ be
the quota at the end of the current stage. If y = 0 then
clearly Q′ < Q. If y 6= 0 then Q < x/y, so that (1.2)
gives

Q′ =
va − x

1 + s − tx − y
6 va

1 + s − tx
= Q.

This contradicts the supposition that the quota increases
in the current stage, and this contradiction proves the
result. 2

Proposition 3. In any QPQ count, if a is elected with
quotient qa, and b is a hopeful candidate whose quo-
tients at the start and end of the stage in which a is
elected are qb and q′b respectively, then qb 6 q′b 6 qa.

Proof. Clearly qb 6 qa, since otherwise a would not
have been elected in this stage. Suppose there are x
ballots that contribute to a at the start of this stage and
to b at the end of this stage, and let y = x/qa, so that
x/y = qa > qb. Then, after a’s election, each of these x
candidates is deemed to have elected 1/qa candidates,
so that collectively they have elected y candidates. If
at the start of the current stage there were vb ballots
contributing to b, which collectively had already elected
tb candidates, then

qb =
vb

1 + tb
6 q′b =

vb + x

1 + tb + y
6 x

y
= qa

by (1.1). 2

Proposition 4. In a QPQ count in which no exclusions
occur, each candidate to be elected has a quotient (at
the time of election) that is no larger than the quotient
(at the time of election) of the previous candidate to be
elected.

Proof. If candidates a and b are elected in successive
stages, with quotients qa and q′b respectively, and if b’s
quotient at the start of the stage in which a is elected is
qb, then qb 6 q′b 6 qa by Proposition 3. In particular,
q′b 6 qa, which is all we have to prove. 2

Proposition 5. Even if the stopping condition in para-
graph 2.5a is deleted, it is not possible for more than s
candidates to be elected by any form of QPQ (single-
round or multi-round).

Proof. Suppose it is. Consider the stage in which the
(s + 1)th candidate, c, is elected. At the start of this
stage, let the quota be Q; let there be vc ballots con-
tributing to c, and suppose these vc ballots collectively
are currently electing tc candidates; let there be vo bal-
lots contributing to other hopeful candidates, which are
currently electing to candidates; let the number of active
ballots be va = vc+vo; and let the number of candidates
being elected by the inactive ballots be tx = s− tc− to.
As in the proof of Proposition 2, every ballot has elected
at most 1/Q candidates, and so to 6 vo/Q. Thus

vo

to
> Q =

va

1 + s − tx
=

vc + vo

1 + tc + to
,

and, by (1.2), c’s quotient qc satisfies

qc =
vc

1 + tc
=

(vc + vo)− vo

(1 + tc + to) − to
6 vc + vo

1 + tc + to
= Q.

This shows that c cannot be elected in the current stage,
and this contradiction shows that at most s candidates
are elected in total. 2

Proposition 6. Even if the stopping condition in para-
graph 2.5b is deleted, at least s candidates must be
elected by any form of QPQ (single-round or multi-
round).

Proof. Suppose this is not true, and consider the stage
in which the number of nonexcluded candidates first
falls below s. Suppose that at the start of this stage there
are e elected candidates and (therefore) s − e hopeful
candidates. Since no hopeful candidate has a quotient
greater than the quota,

vc 6 Q(1 + tc) (1.3)

for every hopeful candidate c, where Q is the quota,
vc is the number of ballots contributing to c, and tc
is the number of candidates that these ballots collec-
tively have elected, all measured at the start of the cur-
rent stage. Now, the sum of the s − e numbers vc is
va, the number of active ballots, and the sum of the
s − e numbers tc is the number of candidates elected
by all the active ballots, which is e− tx , where tx is the
number of candidates elected by the inactive ballots. So
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summing (1.3) over all s − e hopeful candidates gives
va 6 Q(s − e + e − tx) = Q(s − tx). Thus

Q =
va

1 + s − tx
<

va

s − tx
6 Q.

This contradiction shows that at least one of the s − e
hopeful candidates must have a quotient greater than the
quota Q, and so be elected in the current stage. This
contradicts the supposition that the number of nonex-
cluded candidates falls in the current stage, and this
contradiction proves the result. 2

Propositions 5 and 6 together show that, left to its
own devices, QPQ will always elect the right number of
candidates; the only stopping condition required is that
the election must terminate when there are no hopeful
candidates left.

Proposition 7. Every form of QPQ satisfies the Droop
proportionality criterion: if more than k Droop quotas
of voters are solidly committed to the same set of l > k
candidates, then at least k of those l candidates must be
elected.

Proof. The argument is rather similar to the proof of
the previous proposition. Let L be the set of l candi-
dates in question. In view of Proposition 5, we may
assume that the stopping condition in paragraph 2.5a is
deleted, so that the count cannot end because we have
elected too many candidates outside L. Thus if Propo-
sition 7 is not true then there must come a point in some
election at which the number of nonexcluded candidates
inL falls below k. Consider the stage in which this hap-
pens. Suppose that at the start of this stage there are e
elected candidates and (therefore) k − e hopeful candi-
dates in L. Since no hopeful candidate has a quotient
greater than the quota Q, (1.3) holds for all these k − e
hopeful candidates. Since the quota at the start of the
count was equal to the Droop quota, and, by Proposi-
tion 2, the quota never increases, the number of ballots
solidly committed to L is greater than kQ, and so the
sum of the k − e numbers vc is greater than kQ. More-
over, none of these ballots can have contributed to elect-
ing any candidate outsideL, and so the sum of the k−e
numbers tc is at most e. So summing (1.3) over all k−e
hopeful candidates in L gives

Qk <
∑

c

vc 6 Q
(∑

c

(1+tc)
)
6 Q(k−e+e) = Qk.

This contradiction shows that at least one of the hopeful
candidates inL must have a quotient that is greater than

Q, and so the number of nonexcluded candidates in L
cannot fall in the current stage. This contradiction in
turn proves the result. 2

Proposition 8. Suppose that in the first k stages of a
QPQ count candidates a1, . . . , ak are elected (in that
order) with quotients q1, . . . , qk respectively, and in the
(k + 1)th stage candidate b is excluded. Suppose that
the count is restarted with b’s name deleted from every
ballot. Then, in the new count, candidates a1, . . . , ak
will all be elected before any exclusions take place, and
each candidate ai will have quotient at least qi at the
time of their election.

Proof. Suppose that in the first count the quota at the
time of ai’s election is Qi, so that qi > Qi, for each i.
The deletion of b cannot decrease any candidate’s initial
quotient, nor increase the quota, and so at the start of
the new count a1 has quotient at least q1 and the quota
is at most Q1. Since, by Propositions 2 and 3, the elec-
tion of other candidates cannot increase the quota nor
decrease a1’s quotient, a1 will have a quotient greater
than the quota as long as a1 remains hopeful. Thus a1

will eventually be elected, before any exclusions take
place, with a quotient that is at least q1.

In order to obtain a contradiction, suppose that the
conclusion of the Proposition does not hold for all these
values of i, and consider the smallest value of i for
which it fails to hold. Then i > 2, since we have just
seen that the conclusion holds for a1. Consider the first
point at which a1, a2, . . . , ai−1 are all elected, and let
aj be the last of these candidates to be elected; aj may,
but need not, be ai−1. Since the conclusion holds for
all of a1, a2, . . . , ai−1, we know that aj had quotient at
least qj at the time of election. By Proposition 4 applied
to the first count and then to the new count, qj > qi,
and every candidate elected so far in the new count has
been elected with a quotient that is at least qj and hence
at least qi. So if ai has already been elected in the new
count then the conclusion of the Proposition holds for
ai. Since we are supposing that this is not the case, it
must be that ai has not yet been elected. We will con-
sider ai’s quotient and the quota at the start of the next
stage, immediately following the election of aj .

In the first count, ai was elected with quotient qi =
vi/(1 + ti), where vi is the number of ballots that con-
tributed to ai after ai−1’s election, and ti is the frac-
tional number of candidates that these ballots had so
far elected. These vi ballots are the ones on which
no candidate other than a1, . . . , ai−1 is preferred to ai,
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and so they again contribute to ai at this point in the
new count. So in the new count, ai now has quotient
q̂i = (vi + v′i)/(1 + t̂i + t̂′i), where v′i is the number
of ballots contributing to ai at this point that did not
contribute to ai at the time of ai’s election in the first
count, and t̂i and t̂′i are the fractional numbers of candi-
dates elected by the original vi contributors and the new
v′i contributors at this point in the new count. Each of
these vi + v′i ballots is deemed to have elected either 0
candidates or a number of candidates of the form 1/q̂,
where q̂ is the smallest quotient of any elected candi-
date listed above ai on that ballot. For all the ballots
of this second type, q̂ > qj > qi; thus t̂′i 6 v′i/qi and
v′i/t̂

′
i > qi. Moreover, for each of the original vi ballots

that is of this second type, the number q̂ for that ballot
is the smallest of a new set of quotients, each of which
is at least as large as the corresponding quotient in the
original count, so that if the ballot was electing 1/q can-
didates at the time of ai’s election in the original count
then q̂ > q and 1/q̂ 6 1/q; thus t̂i 6 ti. It follows from
(1.1) that

q̂i =
vi + v′i

1 + t̂i + t̂′i
> vi + v′i

1 + ti + t̂′i
> vi

1 + ti
= qi. (1.4)

Now let us consider the quota. Let v be the number of
valid ballots. In the first count, the quota at the time of
ai’s election was Qi = (v− vx)/(1 + s− tx ), where vx

is the number of inactive ballots at the time of ai’s elec-
tion, and tx is the fractional number of candidates that
these ballots have elected. These vx inactive ballots are
the ones that contain the name of no candidates other
than a1, . . . , ai−1, and so they are again inactive at this
point in the new count. So in the new count, the quota
at this point is Q̂i = (v − vx − v′x)/(1 + s − t̂x − t̂′x),
where v′x is the number of ballots that were active at
the time of ai’s election in the first count but are inac-
tive at this point in the new count, and t̂x and t̂′x are the
fractional numbers of candidates elected by the origi-
nal and the new inactive ballots at this point in the new
count. By the same argument we used in the previous
paragraph to prove that t̂i 6 ti, we can now deduce that
t̂x 6 tx. Moreover, by Propositions 2 and 4 and the
criterion for election in paragraph 2.5a, every candidate
elected so far has been elected with a quotient that is
greater than the current quota Q̂i, so that t̂′x 6 v′x/Q̂i
and v′x/t

′
x > Q̂i. It follows from (1.1) that

Q̂i =
v − vx − v′x

1 + s − t̂x − t̂′x
6 v − vx

1 + s − t̂x
6 v − vx

1 + s− tx
= Qi.

(1.5)

It follows from (1.4) and (1.5) that q̂i > qi > Qi >
Q̂i, so that ai’s current quotient is greater than the cur-
rent quota. Since, by Propositions 2 and 3, the elec-
tion of other candidates cannot increase the quota nor
decrease ai’s quotient, ai will have a quotient greater
than the quota as long as ai remains hopeful. Thus ai
will eventually be elected, before any exclusions take
place, with a quotient that is at least qi. This contradicts
the supposition that the conclusion of the Proposition
failed to hold for ai, and this contradiction completes
the proof of the Proposition. 2
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