
Fast Algorithms for Counting Ranked Ballots

Jeffrey C. O’Neill
jco8@cornell.edu

1 Introduction

This paper shows how some vote-counting methods
can be implemented significantly faster by organizing
ranked-ballot data into a tree rather than a list. I will
begin by explaining how the tree data structure works
and then apply it to Meek’s method and Condorcet vot-
ing.

2 Tree-Packed Ballots

The most basic way of storing ballots is in a list. For
example, suppose Alice, Bob, and Cindy are candidates
and we have ten voters. The votes could be stored in a
list, where each line corresponds to a ballot, and within
each line, the candidates are listed in order of prefer-
ence. I call this raw or unpacked ballot data, and an
example is shown in Figure 1.1.

In this example, as is inevitable in any real elec-
tion with ranked ballots, some voters will cast the exact
same ballot. Instead, one could store only one copy of

Alice, Cindy
Cindy
Cindy, Alice
Bob
Bob
Alice
Cindy, Alice
Alice
Alice, Bob, Cindy
Bob

Figure 1.1: Raw ballots.

duplicate ballots along with the number of times the bal-
lot occurred. I call this list-packed ballots. Figure 1.2
shows the same ballots from Figure 1.1 packed into a
list.

Many vote-counting methods can use list-packed bal-
lots instead of raw ballots and save computations. For
example IRV, ERS97 STV, and Meek’s method can all
use list-packed ballots but Cambridge and Irish STV
cannot. The reason Cambridge and Irish STV cannot
is that the outcome is dependent on the order of the bal-
lots, and order information is lost with list-packed bal-
lots.

The ballots, however, can be packed even more
densely into a tree, what I call tree-packed ballots. Fig-
ure 1.3 shows the same ballots packed into a tree. The
root of the tree lists the total number of ballots, which
is ten. From the root, branches go downward corre-
sponding to the first-ranked candidates. The subse-
quent nodes list the number of times that candidate was
ranked first on a ballot. Note that these three num-
bers add up to ten. The second level corresponds to the
second-ranked candidates listed after the corresponding
first-ranked candidates. Note that no candidate is ever
ranked second after Bob. Further, note that four ballots
have Alice first, but only two ballots list a candidate sec-
ond after Alice. This is because two of the four voters
who listed Alice first did not rank a candidate second.

For the three data structures, the size of the data struc-

3 Bob
2 Cindy, Alice
2 Alice
1 Cindy
1 Alice, Cindy
1 Alice, Bob, Cindy

Figure 1.2: List-packed ballots.

1

O’Neill: Fast Algorithms for Counting

1

B

B

C

A C

C A

10

1 2

334

1

Figure 1.3: Tree-packed ballots.

ture corresponds to the number of entries, which is the
number of times that candidate names are stored. For
example, the size of the data structure in Figure 1.1 is
15, the size of the data structure in Figure 1.2 is 10,
and the size of the data structure in Figure 1.3 is 7 (the
root node isn’t counted). Table 1.3 shows the sizes of
the three data structures for the ballots from eight elec-
tions. B is the number of ballots, C is the number of
candidates, and S is the number of seats to be filled.

List-packed ballots are 65% of the size of raw ballots.
Tree-packed ballots are 45% of the size of list-packed
ballots and 29% of the size of raw ballots. I expect
the computation time of a particular implementation to
be roughly proportional to the size of the data struc-
ture used. Thus, I expect the computation time with
tree-packed ballots to be about 45% of the computation
time with list-packed ballots. The more complicated
data structures will also add some overhead that will in-
crease the computation time to some extent.

Before presenting the details of implementing vote-
counting methods with the different data structures, I
will present the timing results with the different data
structures. The timing results should only be consid-
ered in a rough sense since the efficiency of the par-
ticular implementations may vary. All timing results
are cumulative for the above eight elections and are in
seconds. First, the times in seconds for loading, load-
ing and list packing, and loading and tree-packing are
shown in Table 1.1.

Next I compare the computation times for a number
of vote-counting methods using list-packed and tree-
packed ballots. Because the relationship between raw
and list-packed ballots is obvious, those times are not

Data Structure Time
Load and No Packing 17.7
Load and List Pack 26.7
Load and Tree Pack 31.1

Table 1.1: Comparison of loading and packing times (in
seconds).

Method List Tree
SNTV 0.6
IRV 1.2
ERS97 STV 5.5
BC STV 4.7
Meek STV 32.8 5.9 (18%)
Warren STV 30.8 3.0 (10%)
Condorcet 13.3 7.7 (59%)

Table 1.2: Timing of vote-counting methods with list-
packed and tree-packed ballots (in seconds). The per-
centages in parenthesis indicate the computation time
of the tree-packed implementation relative to the list-
packed implementation.

compared in this paper.1 Further, only the slower meth-
ods are implemented with tree-packed ballots because
these are the only ones that are in need of improvement.
The methods are single non-transferable vote (SNTV),
instant runoff voting (IRV), Electoral Reform Society
STV (ERS97 STV), STV rules proposed for British
Columbia in 2005 (BC STV), Meek STV, Warren STV,
and Condorcet.2 The computation times are shown in
seconds in Table 1.2. The percentages in parentheses
indicate the computation time of the tree-packed imple-
mentation relative to the list-packed implementation.

While we expected the computation times with tree-
packed ballots to be 45% of the times for list-packed
ballots, they are much faster for Meek and Warren STV.
Why this is so will be explained below.

1Implementing a particular method with raw or list-packed bal-
lots uses nearly the same code. The code iterates over the raw ballots
or iterates over the list-packed ballots. The computation time is sim-
ply proportional to the number of loop iterations. In contrast, with
tree-packed ballots, the code needs to be rewritten from scratch as is
discussed below.

2The timing for Condorcet is only for computing the pairwise
comparison matrix. Computing the Condorcet winner from the pair-
wise comparison matrix is generally much faster than computing the
pairwise computation matrix.

2 Voting matters, Issue 21

O’Neill: Fast Algorithms for Counting

3 Meek STV with Tree-Packed Ballots

I will now give the details of how to implement Meek
STV using tree-packed ballots. The process is very sim-
ilar for Warren STV. A full description of Meek STV is
beyond the scope of this paper [1, 2, 3]. Instead, I will
present the details most relevant to the fast implemen-
tation.

In each stage of counting votes with Meek STV, all
the votes must be counted from scratch. This is distinct
from other STV methods where some votes are simply
transferred from one candidate to another and a full re-
count is not necessary at each round. With Meek STV,
each candidate is assigned a fraction, f[c], where c de-
notes the candidate. At the beginning of the count, all
the fractions are 1.0, and the fractions remain 1.0 as
long as a candidate is under the quota. When a candi-
date has more than a quota, the fraction essentially dis-
counts the value of that candidate’s votes to bring the
candidate back down to a quota. With a discount less
than 1.0, the subsequently ranked candidates on a ballot
will receive a portion of the vote.

In each round of a Meek STV count, the fractions f[c]
will be updated and the ballots recounted. The follow-
ing is a segment of Python pseudo-code for counting
ballots for one round of a Meek count. Note that it uses
list-packed ballots. The ith packed ballot is b.packed[i]
and the corresponding weight of that packed ballot is
b.weight[i].

Iterate over all of the ballots.
for i in range(nBallots):

Each ballot is worth one vote.
remainder = 1.0
Iterate over the candidates on this ballot.
for c in b.packed[i]:

If the candidate is already eliminated
then skip to the next candidate on the
ballot.
if c in losers:

continue
This candidate gets a portion
of this ballot. For the first non-losing
candidate on the ballot, the remainder will
be 1.0. If the candidate is under quota,
then f[c] is also 1.0 and this candidate
gets all of the ballot. Otherwise the
candidate gets less than the full value,
and will share the ballot with
subsequently ranked candidates.
count[c] += remainder * f[c] * b.weight[i]
Calculate how much of this ballot remains,
if any, to be counted for subsequently
ranked candidates.
remainder *= 1 - f[c]
Stop if this ballot is used up.
if remainder == 0:

break

This code can be rewritten to use tree-packed ballots.

The computations are exactly the same as before, they
are just done in a different order so that similar compu-
tations can be done together. Consider the ten ballots
presented above. Alice is ranked first on four ballots.
With list-packed ballots, it would take three loop itera-
tions to count these three ballots, but with tree-packed
ballots all the first-place votes for Alice are counted at
the same time, thus saving computations.

The code is more complicated, because it involves
a depth-first traversal of the tree. The following shows
how the nodes of the tree are accessed and also the order
of a depth-first traversal.

tree[n] = 10
tree[Alice][n] = 4
tree[Alice][Bob][n] = 1
tree[Alice][Bob][Cindy][n] = 1
tree[Alice][Cindy][n] = 1
tree[Bob][n] = 3
tree[Cindy][n] = 3
tree[Cindy][Alice][n] = 2

A convenient way to implement the depth-first traver-
sal is to use a recursive subroutine. Note that the sub-
routine calls itself by passing one branch of the tree,
which is just a smaller tree, and possibly a diminished
value for the remainder.

def updateCountMeek(tree, remainder):
Iterate over the next possible candidates.
for c in tree.nextCands():

Copy the remainder for each iteration.
rrr = remainder
Skip over losing candidates.
if c not in losers:

Count the votes as before but weight with
the tree-packed data instead of the
list-packed data.
count[c] += rrr * f[c] * tree[c][n]
Calculate how much of this ballot remains,
if any, to be counted for subsequently
ranked candidates.
rrr *= 1 - f[c]

If there are any candidates ranked after
the current one and this ballot is not used
up, then recursively repeat this procedure.
if tree[c].nextCands() != [] and rrr > 0:

updateCountMeek(tree[c], rrr)

The initial call to the subroutine uses the base of the
tree, and as before, the initial value of the remainder is
1.0

updateCountMeek(self.b.tree, 1.0)

Now that I have explained the fast algorithm, I can
explain why it works much faster than expected. The
unexpected speed increase arises from the fact that in
any STV election, it is overwhelmingly the top choices
on the ballots that are counted. In the first round of
a Meek election, only the first-ranked candidates are

Voting matters, Issue 21 3

O’Neill: Fast Algorithms for Counting

counted. Consider the ballots for the Dublin North 2002
election. With list-packed ballots, one needs to count
the 138,647 weighted ballots, but with tree-packed bal-
lots, one needs to count only the twelve nodes of the tree
corresponding to the first rankings of the twelve candi-
dates. As the rounds progress, more and more nodes in
the tree will be needed for the count, but generally this
will be far less than the total number of nodes in the tree
and even further less than the number of list-packed bal-
lots.

Readers who understand the differences between
Meek STV and Warren STV will immediately realize
why Warren STV is much faster than Meek STV with
the tree-packed ballots: Warren STV is less likely than
Meek STV to use lower-ranked choices on a ballot.

4 Condorcet with Tree-Packed Ballots

Tree-packed ballots can also be used to compute the
pairwise comparison matrix in a Condorcet election.
The pairwise comparison matrix, pMat[c][d], counts
the number of times that candidate c is ranked higher
than candidate d on the ballots. Computing the pairwise
comparison matrix is straightforward with list-packed
ballots:

Iterate over all the ballots.
for i in range(nBallots):

Copy the list of candidates.
remainingC = candidates[:]
Iterate over the candidates the ballot.
for c in b.packed[i]:
Get list of lower-ranked candidates.
remainingC.remove(c)
Iterate over all lower-ranked candidates.
for d in remainingC:

c is ranked higher than d.
pMat[c][d] += b.weight[i]

This code can also be rewritten to use tree-packed
ballots. As before it involves the depth-first traversal of
the tree.

def ComputePMat(tree, remainingC):
remainingC is a list of candidates not higher in
the ballot than the current candidate. Initially
it is a list of all the candidates.
Iterate over the next possible candidates.
for c in tree.nextCands():
Copy the list of remaining candidates.
rc = remainingC
Remove candidate from remaining list.
rc.remove(c)
for d in rc:

Current candidate is ranked higher than
candidates in remaining list.
pMat[c][d] += tree[c][n]

Continue if more candidates.
if tree[c].nextCands() != []:

ComputePMat(tree[c], rc)

First call is with entire tree and list of all
candidates.
ComputePMat(tree, allCands)

Computing the pairwise comparison matrix is faster
with tree-packed ballots, but the improvement is not
nearly as great as for Meek STV. The reason for this
is that computing the pairwise comparison matrix re-
quires traversing the entire tree, thus the computation
times are roughly proportional to the relative sizes of
the data structures. The overhead involved with us-
ing tree-packed ballots makes the implementation with
tree-packed ballots a little slower than expected.

5 Conclusions

Using tree-packed ballots instead of other data struc-
tures can greatly increase the speed of some vote-
counting methods. Such speed improvements need to
be weighed against the time needed to create the tree-
packed ballots and the cost of maintaining more com-
plex code. Meek and Warren STV are approximately
five and ten times faster, respectively, with tree-packed
ballots than with list-packed ballots. Such enormous
speed improvements clearly outweigh the costs. In con-
trast, with Condorcet voting, the time saved is about
equal to the time required for tree-packing the ballots
so any benefits are minimal. Other methods, such as
ERS97 STV and BC STV, are so fast with list-packed
ballots that tree-packed ballots are clearly not benefi-
cial.

My implementation of all of the vote counting meth-
ods mentioned in this paper (and others) is available for
download athttp://stv.sourceforge.net.

6 References

[1] Nicolaus Tideman,The Single Transferable Vote,
Journal of Economic Perspectives, Vol. 9, No. 1,
pp. 27-38 (1995).

[2] B. L. Meek,A New Approach to the Single Trans-
ferable Vote, Voting matters, Issue 1, p. 1 (Mar.
1994).

[3] I. D. Hill, B. A. Wichmann, and D. R. Woodall,
Algorithm 123 – Single Transferable Vote by
Meek’s Method, Computer Journal, Vol. 30, No.
3, pp. 277-281 (1987).

4 Voting matters, Issue 21

O’Neill: Fast Algorithms for Counting

Election B/C/S Raw List Tree
Dublin North 2002 43,942/12/4 218,933 138,647 57,568

Dublin West 2002 29,988/9/3 132,726 69,860 23,730

Meath 2002 64,081/14/5 298,106 174,737 74,105

Cambridge 1999 City Council 18,777/29/9 106,585 90,816 47,813

Cambridge 2001 City Council 17,126/28/9 95,440 79,385 40,566

Cambridge 2001 School Committee 16,489/16/6 66,254 33,86012,907

Cambridge 2003 City Council 20,080/29/9 115,232 98,055 54,182

Cambridge 2003 School Committee 18,698/14/6 66,389 29,6379,764

Total 1,099,665 714,997 320,635

B/C/S = Ballots/Candidates/Seats

Table 1.3: Sizes of the three data structures for the eight elections. The size of a data structure is the number of
entries. See the text for more details.

Voting matters, Issue 21 5

